TY - JOUR AB - We consider products of independent square non-Hermitian random matrices. More precisely, let X1,…, Xn be independent N × N random matrices with independent entries (real or complex with independent real and imaginary parts) with zero mean and variance 1/N. Soshnikov-O’Rourke [19] and Götze-Tikhomirov [15] showed that the empirical spectral distribution of the product of n random matrices with iid entries converges to (equation found). We prove that if the entries of the matrices X1,…, Xn are independent (but not necessarily identically distributed) and satisfy uniform subexponential decay condition, then in the bulk the convergence of the ESD of X1,…, Xn to (0.1) holds up to the scale N–1/2+ε. AU - Nemish, Yuriy ID - 1023 JF - Electronic Journal of Probability SN - 10836489 TI - Local law for the product of independent non-Hermitian random matrices with independent entries VL - 22 ER - TY - JOUR AB - We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys. AU - Pranav, Pratyush AU - Edelsbrunner, Herbert AU - Van De Weygaert, Rien AU - Vegter, Gert AU - Kerber, Michael AU - Jones, Bernard AU - Wintraecken, Mathijs ID - 1022 IS - 4 JF - Monthly Notices of the Royal Astronomical Society SN - 00358711 TI - The topology of the cosmic web in terms of persistent Betti numbers VL - 465 ER - TY - JOUR AB - The optogenetic revolution enabled spatially-precise and temporally-precise control over protein function, signaling pathway activation, and animal behavior with tremendous success in the dissection of signaling networks and neural circuits. Very recently, optogenetic methods have been paired with optical reporters in novel drug screening platforms. In these all-optical platforms, light remotely activated ion channels and kinases thereby obviating the use of electrophysiology or reagents. Consequences were remarkable operational simplicity, throughput, and cost-effectiveness that culminated in the identification of new drug candidates. These blueprints for all-optical assays also revealed potential pitfalls and inspire all-optical variants of other screens, such as those that aim at better understanding dynamic drug action or orphan protein function. AU - Agus, Viviana AU - Janovjak, Harald L ID - 1026 JF - Current Opinion in Biotechnology SN - 09581669 TI - Optogenetic methods in drug screening: Technologies and applications VL - 48 ER - TY - JOUR AB - Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light-matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation. AU - Caixeiro, Soraya AU - Peruzzo, Matilda AU - Onelli, Olimpia AU - Vignolini, Silvia AU - Sapienza, Riccardo ID - 1020 IS - 9 JF - ACS Applied Materials and Interfaces SN - 19448244 TI - Disordered cellulose based nanostructures for enhanced light scattering VL - 9 ER - TY - JOUR AB - Most flows in nature and engineering are turbulent because of their large velocities and spatial scales. Laboratory experiments on rotating quasi-Keplerian flows, for which the angular velocity decreases radially but the angular momentum increases, are however laminar at Reynolds numbers exceeding one million. This is in apparent contradiction to direct numerical simulations showing that in these experiments turbulence transition is triggered by the axial boundaries. We here show numerically that as the Reynolds number increases, turbulence becomes progressively confined to the boundary layers and the flow in the bulk fully relaminarizes. Our findings support that turbulence is unlikely to occur in isothermal constant-density quasi-Keplerian flows. AU - Lopez Alonso, Jose M AU - Avila, Marc ID - 1021 JF - Journal of Fluid Mechanics SN - 00221120 TI - Boundary layer turbulence in experiments on quasi Keplerian flows VL - 817 ER -