TY - JOUR
AB - The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels. The asymmetry in the auxin distribution is established and maintained by a spatio-temporal regulation of the PIN-FORMED (PIN) auxin transporter activity. We provide novel insights into the complex regulation of PIN abundance and activity during root gravitropism. We show that PIN2 turnover is differentially regulated on the upper and lower side of gravistimulated roots by distinct but partially overlapping auxin feedback mechanisms. In addition to regulating transcription and clathrin-mediated internalization, auxin also controls PIN abundance at the plasma membrane by promoting their vacuolar targeting and degradation. This effect of elevated auxin levels requires the activity of SKP-Cullin-F-box TIR1/AFB (SCF TIR1/AFB)-dependent pathway. Importantly, also suboptimal auxin levels mediate PIN degradation utilizing the same signalling pathway. These feedback mechanisms are functionally important during gravitropic response and ensure fine-tuning of auxin fluxes for maintaining as well as terminating asymmetric growth.
AU - Baster, Pawel
AU - Robert, Stéphanie
AU - Kleine Vehn, Jürgen
AU - Vanneste, Steffen
AU - Kania, Urszula
AU - Grunewald, Wim
AU - De Rybel, Bert
AU - Beeckman, Tom
AU - Friml, Jirí
ID - 2919
IS - 2
JF - EMBO Journal
TI - SCF^TIR1 AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism
VL - 32
ER -
TY - JOUR
AB - Cell polarisation in development is a common and fundamental process underlying embryo patterning and morphogenesis, and has been extensively studied over the past years. Our current knowledge of cell polarisation in development is predominantly based on studies that have analysed polarisation of single cells, such as eggs, or cellular aggregates with a stable polarising interface, such as cultured epithelial cells (St Johnston and Ahringer, 2010). However, in embryonic development, particularly of vertebrates, cell polarisation processes often encompass large numbers of cells that are placed within moving and proliferating tissues, and undergo mesenchymal-to-epithelial transitions with a highly complex spatiotemporal choreography. How such intricate cell polarisation processes in embryonic development are achieved has only started to be analysed. By using live imaging of neurulation in the transparent zebrafish embryo, Buckley et al (2012) now describe a novel polarisation strategy by which cells assemble an apical domain in the part of their cell body that intersects with the midline of the forming neural rod. This mechanism, along with the previously described mirror-symmetric divisions (Tawk et al, 2007), is thought to trigger formation of both neural rod midline and lumen.
AU - Compagnon, Julien
AU - Heisenberg, Carl-Philipp J
ID - 2920
IS - 1
JF - EMBO Journal
TI - Neurulation coordinating cell polarisation and lumen formation
VL - 32
ER -
TY - JOUR
AB - To fight infectious diseases, host immune defenses are employed at multiple levels. Sanitary behavior, such as pathogen avoidance and removal, acts as a first line of defense to prevent infection [1] before activation of the physiological immune system. Insect societies have evolved a wide range of collective hygiene measures and intensive health care toward pathogen-exposed group members [2]. One of the most common behaviors is allogrooming, in which nestmates remove infectious particles from the body surfaces of exposed individuals [3]. Here we show that, in invasive garden ants, grooming of fungus-exposed brood is effective beyond the sheer mechanical removal of fungal conidiospores; it also includes chemical disinfection through the application of poison produced by the ants themselves. Formic acid is the main active component of the poison. It inhibits fungal growth of conidiospores remaining on the brood surface after grooming and also those collected in the mouth of the grooming ant. This dual function is achieved by uptake of the poison droplet into the mouth through acidopore self-grooming and subsequent application onto the infectious brood via brood grooming. This extraordinary behavior extends the current understanding of grooming and the establishment of social immunity in insect societies.
AU - Tragust, Simon
AU - Mitteregger, Barbara
AU - Barone, Vanessa
AU - Konrad, Matthias
AU - Ugelvig, Line V
AU - Cremer, Sylvia
ID - 2926
IS - 1
JF - Current Biology
TI - Ants disinfect fungus-exposed brood by oral uptake and spread of their poison
VL - 23
ER -
TY - JOUR
AB - In this paper, we present the first output-sensitive algorithm to compute the persistence diagram of a filtered simplicial complex. For any Γ > 0, it returns only those homology classes with persistence at least Γ. Instead of the classical reduction via column operations, our algorithm performs rank computations on submatrices of the boundary matrix. For an arbitrary constant δ ∈ (0, 1), the running time is O (C (1 - δ) Γ R d (n) log n), where C (1 - δ) Γ is the number of homology classes with persistence at least (1 - δ) Γ, n is the total number of simplices in the complex, d its dimension, and R d (n) is the complexity of computing the rank of an n × n matrix with O (d n) nonzero entries. Depending on the choice of the rank algorithm, this yields a deterministic O (C (1 - δ) Γ n 2.376) algorithm, an O (C (1 - δ) Γ n 2.28) Las-Vegas algorithm, or an O (C (1 - δ) Γ n 2 + ε{lunate}) Monte-Carlo algorithm for an arbitrary ε{lunate} > 0. The space complexity of the Monte-Carlo version is bounded by O (d n) = O (n log n).
AU - Chen, Chao
AU - Kerber, Michael
ID - 2939
IS - 4
JF - Computational Geometry: Theory and Applications
TI - An output sensitive algorithm for persistent homology
VL - 46
ER -
TY - CONF
AB - A chain rule for an entropy notion H(.) states that the entropy H(X) of a variable X decreases by at most l if conditioned on an l-bit string A, i.e., H(X|A)>= H(X)-l. More generally, it satisfies a chain rule for conditional entropy if H(X|Y,A)>= H(X|Y)-l.
All natural information theoretic entropy notions we are aware of (like Shannon or min-entropy) satisfy some kind of chain rule for conditional entropy. Moreover, many computational entropy notions (like Yao entropy, unpredictability entropy and several variants of HILL entropy) satisfy the chain rule for conditional entropy, though here not only the quantity decreases by l, but also the quality of the entropy decreases exponentially in l. However, for
the standard notion of conditional HILL entropy (the computational equivalent of min-entropy) the existence of such a rule was unknown so far.
In this paper, we prove that for conditional HILL entropy no meaningful chain rule exists, assuming the existence of one-way permutations: there exist distributions X,Y,A, where A is a distribution over a single bit, but $H(X|Y)>>H(X|Y,A)$, even if we simultaneously allow for a massive degradation in the quality of the entropy.
The idea underlying our construction is based on a surprising connection between the chain rule for HILL entropy and deniable encryption.
AU - Krenn, Stephan
AU - Pietrzak, Krzysztof Z
AU - Wadia, Akshay
ED - Sahai, Amit
ID - 2940
TI - A counterexample to the chain rule for conditional HILL entropy, and what deniable encryption has to do with it
VL - 7785
ER -