TY - CONF
AB - A straight skeleton is a well-known geometric structure, and several algorithms exist to construct the straight skeleton for a given polygon. In this paper, we ask the reverse question: Given the straight skeleton (in form of a tree with a drawing in the plane, but with the exact position of the leaves unspecified), can we reconstruct the polygon? We show that in most cases there exists at most one polygon; in the remaining case there is an infinite number of polygons determined by one angle that can range in an interval. We can find this (set of) polygon(s) in linear time in the Real RAM computer model.
AU - Biedl, Therese
AU - Held, Martin
AU - Huber, Stefan
ID - 2210
T2 - 29th European Workshop on Computational Geometry
TI - Reconstructing polygons from embedded straight skeletons
ER -
TY - CONF
AB - We describe new extensions of the Vampire theorem prover for computing tree interpolants. These extensions generalize Craig interpolation in Vampire, and can also be used to derive sequence interpolants. We evaluated our implementation on a large number of examples over the theory of linear integer arithmetic and integer-indexed arrays, with and without quantifiers. When compared to other methods, our experiments show that some examples could only be solved by our implementation.
AU - Blanc, Régis
AU - Gupta, Ashutosh
AU - Kovács, Laura
AU - Kragl, Bernhard
ID - 2237
TI - Tree interpolation in Vampire
VL - 8312
ER -
TY - CONF
AB - We study the problem of achieving a given value in Markov decision processes (MDPs) with several independent discounted reward objectives. We consider a generalised version of discounted reward objectives, in which the amount of discounting depends on the states visited and on the objective. This definition extends the usual definition of discounted reward, and allows to capture the systems in which the value of different commodities diminish at different and variable rates.
We establish results for two prominent subclasses of the problem, namely state-discount models where the discount factors are only dependent on the state of the MDP (and independent of the objective), and reward-discount models where they are only dependent on the objective (but not on the state of the MDP). For the state-discount models we use a straightforward reduction to expected total reward and show that the problem whether a value is achievable can be solved in polynomial time. For the reward-discount model we show that memory and randomisation of the strategies are required, but nevertheless that the problem is decidable and it is sufficient to consider strategies which after a certain number of steps behave in a memoryless way.
For the general case, we show that when restricted to graphs (i.e. MDPs with no randomisation), pure strategies and discount factors of the form 1/n where n is an integer, the problem is in PSPACE and finite memory suffices for achieving a given value. We also show that when the discount factors are not of the form 1/n, the memory required by a strategy can be infinite.
AU - Chatterjee, Krishnendu
AU - Forejt, Vojtěch
AU - Wojtczak, Dominik
ID - 2238
TI - Multi-objective discounted reward verification in graphs and MDPs
VL - 8312
ER -
TY - CONF
AB - We show that modal logic over universally first-order definable classes of transitive frames is decidable. More precisely, let K be an arbitrary class of transitive Kripke frames definable by a universal first-order sentence. We show that the global and finite global satisfiability problems of modal logic over K are decidable in NP, regardless of choice of K. We also show that the local satisfiability and the finite local satisfiability problems of modal logic over K are decidable in NEXPTIME.
AU - Michaliszyn, Jakub
AU - Otop, Jan
ID - 2243
TI - Elementary modal logics over transitive structures
VL - 23
ER -
TY - CONF
AB - We consider two systems (α1,...,αm) and (β1,...,βn) of curves drawn on a compact two-dimensional surface ℳ with boundary. Each αi and each βj is either an arc meeting the boundary of ℳ at its two endpoints, or a closed curve. The αi are pairwise disjoint except for possibly sharing endpoints, and similarly for the βj. We want to "untangle" the βj from the αi by a self-homeomorphism of ℳ; more precisely, we seek an homeomorphism φ: ℳ → ℳ fixing the boundary of ℳ pointwise such that the total number of crossings of the αi with the φ(βj) is as small as possible. This problem is motivated by an application in the algorithmic theory of embeddings and 3-manifolds. We prove that if ℳ is planar, i.e., a sphere with h ≥ 0 boundary components ("holes"), then O(mn) crossings can be achieved (independently of h), which is asymptotically tight, as an easy lower bound shows. In general, for an arbitrary (orientable or nonorientable) surface ℳ with h holes and of (orientable or nonorientable) genus g ≥ 0, we obtain an O((m + n)4) upper bound, again independent of h and g.
AU - Matoušek, Jiří
AU - Sedgwick, Eric
AU - Tancer, Martin
AU - Wagner, Uli
ID - 2244
TI - Untangling two systems of noncrossing curves
VL - 8242
ER -