TY - JOUR AB - Imaging is a dominant strategy for data collection in neuroscience, yielding stacks of images that often scale to gigabytes of data for a single experiment. Machine learning algorithms from computer vision can serve as a pair of virtual eyes that tirelessly processes these images, automatically detecting and identifying microstructures. Unlike learning methods, our Flexible Learning-free Reconstruction of Imaged Neural volumes (FLoRIN) pipeline exploits structure-specific contextual clues and requires no training. This approach generalizes across different modalities, including serially-sectioned scanning electron microscopy (sSEM) of genetically labeled and contrast enhanced processes, spectral confocal reflectance (SCoRe) microscopy, and high-energy synchrotron X-ray microtomography (μCT) of large tissue volumes. We deploy the FLoRIN pipeline on newly published and novel mouse datasets, demonstrating the high biological fidelity of the pipeline’s reconstructions. FLoRIN reconstructions are of sufficient quality for preliminary biological study, for example examining the distribution and morphology of cells or extracting single axons from functional data. Compared to existing supervised learning methods, FLoRIN is one to two orders of magnitude faster and produces high-quality reconstructions that are tolerant to noise and artifacts, as is shown qualitatively and quantitatively. AU - Shabazi, Ali AU - Kinnison, Jeffery AU - Vescovi, Rafael AU - Du, Ming AU - Hill, Robert AU - Jösch, Maximilian A AU - Takeno, Marc AU - Zeng, Hongkui AU - Da Costa, Nuno AU - Grutzendler, Jaime AU - Kasthuri, Narayanan AU - Scheirer, Walter ID - 62 IS - 1 JF - Scientific Reports TI - Flexible learning-free segmentation and reconstruction of neural volumes VL - 8 ER - TY - JOUR AB - Dendritic cells (DCs) are sentinels of the adaptive immune system that reside in peripheral organs of mammals. Upon pathogen encounter, they undergo maturation and up-regulate the chemokine receptor CCR7 that guides them along gradients of its chemokine ligands CCL19 and 21 to the next draining lymph node. There, DCs present peripherally acquired antigen to naïve T cells, thereby triggering adaptive immunity. AU - Leithner, Alexander F AU - Renkawitz, Jörg AU - De Vries, Ingrid AU - Hauschild, Robert AU - Haecker, Hans AU - Sixt, Michael K ID - 437 IS - 6 JF - European Journal of Immunology TI - Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration VL - 48 ER - TY - JOUR AB - Insects are exposed to a variety of potential pathogens in their environment, many of which can severely impact fitness and health. Consequently, hosts have evolved resistance and tolerance strategies to suppress or cope with infections. Hosts utilizing resistance improve fitness by clearing or reducing pathogen loads, and hosts utilizing tolerance reduce harmful fitness effects per pathogen load. To understand variation in, and selective pressures on, resistance and tolerance, we asked to what degree they are shaped by host genetic background, whether plasticity in these responses depends upon dietary environment, and whether there are interactions between these two factors. Females from ten wild-type Drosophila melanogaster genotypes were kept on high- or low-protein (yeast) diets and infected with one of two opportunistic bacterial pathogens, Lactococcus lactis or Pseudomonas entomophila. We measured host resistance as the inverse of bacterial load in the early infection phase. The relationship (slope) between fly fecundity and individual-level bacteria load provided our fecundity tolerance measure. Genotype and dietary yeast determined host fecundity and strongly affected survival after infection with pathogenic P. entomophila. There was considerable genetic variation in host resistance, a commonly found phenomenon resulting from for example varying resistance costs or frequency-dependent selection. Despite this variation and the reproductive cost of higher P. entomophila loads, fecundity tolerance did not vary across genotypes. The absence of genetic variation in tolerance may suggest that at this early infection stage, fecundity tolerance is fixed or that any evolved tolerance mechanisms are not expressed under these infection conditions. AU - Kutzer, Megan AU - Kurtz, Joachim AU - Armitage, Sophie ID - 617 IS - 1 JF - Journal of Evolutionary Biology SN - 1010-061X TI - Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance VL - 31 ER - TY - JOUR AB - Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered, the etiological variability and the heterogeneous clinical presentation, the need for genotype — along with phenotype- based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in genomic analysis and their translation into clinical practice. AU - Tarlungeanu, Dora-Clara AU - Novarino, Gaia ID - 5888 IS - 8 JF - Experimental & Molecular Medicine SN - 2092-6413 TI - Genomics in neurodevelopmental disorders: an avenue to personalized medicine VL - 50 ER - TY - JOUR AB - We prove upper and lower bounds on the ground-state energy of the ideal two-dimensional anyon gas. Our bounds are extensive in the particle number, as for fermions, and linear in the statistics parameter (Formula presented.). The lower bounds extend to Lieb–Thirring inequalities for all anyons except bosons. AU - Lundholm, Douglas AU - Seiringer, Robert ID - 295 IS - 11 JF - Letters in Mathematical Physics TI - Fermionic behavior of ideal anyons VL - 108 ER -