TY - JOUR
AB - Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such “K-pairwise” models—being systematic extensions of the previously used pairwise Ising models—provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.
AU - Tkacik, Gasper
AU - Marre, Olivier
AU - Amodei, Dario
AU - Schneidman, Elad
AU - Bialek, William
AU - Berry, Michael
ID - 2257
IS - 1
JF - PLoS Computational Biology
SN - 1553734X
TI - Searching for collective behavior in a large network of sensory neurons
VL - 10
ER -
TY - JOUR
AB - Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance) is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.
AU - Cimadom, Arno
AU - Ulloa, Angel
AU - Meidl, Patrick
AU - Zöttl, Markus
AU - Zöttl, Elisabet
AU - Fessl, Birgit
AU - Nemeth, Erwin
AU - Dvorak, Michael
AU - Cunninghame, Francesca
AU - Tebbich, Sabine
ID - 468
IS - 9
JF - PLoS One
TI - Invasive parasites habitat change and heavy rainfall reduce breeding success in Darwin's finches
VL - 9
ER -
TY - CONF
AB - First cycle games (FCG) are played on a finite graph by two players who push a token along the edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some fixed property Y of the sequence of labels of the edges (or nodes) forming this cycle. These games are traditionally of interest because of their connection with infinite-duration games such as parity and mean-payoff games. We study the memory requirements for winning strategies of FCGs and certain associated infinite duration games. We exhibit a simple FCG that is not memoryless determined (this corrects a mistake in Memoryless determinacy of parity and mean payoff games: a simple proof by Bj⋯orklund, Sandberg, Vorobyov (2004) that claims that FCGs for which Y is closed under cyclic permutations are memoryless determined). We show that θ (n)! memory (where n is the number of nodes in the graph), which is always sufficient, may be necessary to win some FCGs. On the other hand, we identify easy to check conditions on Y (i.e., Y is closed under cyclic permutations, and both Y and its complement are closed under concatenation) that are sufficient to ensure that the corresponding FCGs and their associated infinite duration games are memoryless determined. We demonstrate that many games considered in the literature, such as mean-payoff, parity, energy, etc., satisfy these conditions. On the complexity side, we show (for efficiently computable Y) that while solving FCGs is in PSPACE, solving some families of FCGs is PSPACE-hard.
AU - Aminof, Benjamin
AU - Rubin, Sasha
ID - 475
T2 - Electronic Proceedings in Theoretical Computer Science, EPTCS
TI - First cycle games
VL - 146
ER -
TY - JOUR
AB - Energy games belong to a class of turn-based two-player infinite-duration games played on a weighted directed graph. It is one of the rare and intriguing combinatorial problems that lie in NP∩co-NP, but are not known to be in P. The existence of polynomial-time algorithms has been a major open problem for decades and apart from pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass in polynomial time. In this paper, we give several results based on the weight structures of the graph. First, we identify a notion of penalty and present a polynomial-time algorithm when the penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of weighted graphs. It includes several worst-case instances on which previous algorithms, such as value iteration and random facet algorithms, require at least sub-exponential time. Our main technique is developing the first non-trivial approximation algorithm and showing how to convert it to an exact algorithm. Moreover, we show that in a practical case in verification where weights are clustered around a constant number of values, the energy game problem can be solved in polynomial time. We also show that the problem is still as hard as in general when the clique-width is bounded or the graph is strongly ergodic, suggesting that restricting the graph structure does not necessarily help.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Krinninger, Sebastian
AU - Nanongkai, Danupon
ID - 535
IS - 3
JF - Algorithmica
TI - Polynomial time algorithms for energy games with special weight structures
VL - 70
ER -
TY - JOUR
AB - Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life-history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.
AU - Prizak, Roshan
AU - Ezard, Thomas
AU - Hoyle, Rebecca
ID - 537
IS - 15
JF - Ecology and Evolution
TI - Fitness consequences of maternal and grandmaternal effects
VL - 4
ER -