TY - JOUR AB - Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells. AU - Yeung, Jake AU - Florescu, Maria AU - Zeller, Peter AU - De Barbanson, Buys Anton AU - Wellenstein, Max D. AU - Van Oudenaarden, Alexander ID - 12106 JF - Nature Biotechnology SN - 1087-0156 TI - scChIX-seq infers dynamic relationships between histone modifications in single cells VL - 41 ER - TY - JOUR AB - We consider a gas of n bosonic particles confined in a box [−ℓ/2,ℓ/2]3 with Neumann boundary conditions. We prove Bose–Einstein condensation in the Gross–Pitaevskii regime, with an optimal bound on the condensate depletion. Moreover, our lower bound for the ground state energy in a small box [−ℓ/2,ℓ/2]3 implies (via Neumann bracketing) a lower bound for the ground state energy of N bosons in a large box [−L/2,L/2]3 with density ρ=N/L3 in the thermodynamic limit. AU - Boccato, Chiara AU - Seiringer, Robert ID - 12183 JF - Annales Henri Poincare SN - 1424-0637 TI - The Bose Gas in a box with Neumann boundary conditions VL - 24 ER - TY - JOUR AB - Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software. AU - Koehl, Patrice AU - Akopyan, Arseniy AU - Edelsbrunner, Herbert ID - 12544 IS - 3 JF - Journal of Chemical Information and Modeling SN - 1549-9596 TI - Computing the volume, surface area, mean, and Gaussian curvatures of molecules and their derivatives VL - 63 ER - TY - JOUR AB - Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. AU - Stock, Miriam AU - Milutinovic, Barbara AU - Hönigsberger, Michaela AU - Grasse, Anna V AU - Wiesenhofer, Florian AU - Kampleitner, Niklas AU - Narasimhan, Madhumitha AU - Schmitt, Thomas AU - Cremer, Sylvia ID - 12543 JF - Nature Ecology and Evolution TI - Pathogen evasion of social immunity VL - 7 ER - TY - JOUR AB - Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated. AU - Mrnjavac, Andrea AU - Khudiakova, Kseniia AU - Barton, Nicholas H AU - Vicoso, Beatriz ID - 12521 IS - 1 JF - Evolution Letters KW - Genetics KW - Ecology KW - Evolution KW - Behavior and Systematics SN - 2056-3744 TI - Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution VL - 7 ER -