TY - CONF
AB - We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) x1...xn is the sum of terms over intervals [i,j] where each term is non-zero only if the substring xi...xj equals a prespecified pattern α. Such CRFs can be naturally applied to many sequence tagging problems.
We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively O(nL), O(nLℓmax) and O(nLmin{|D|,log(ℓmax+1)}) where L is the combined length of input patterns, ℓmax is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively O(nL|D|), O(n|Γ|L2ℓ2max) and O(nL|D|), where |Γ| is the number of input patterns.
In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an O(nL) algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case.
AU - Takhanov, Rustem
AU - Kolmogorov, Vladimir
ID - 2272
IS - 3
T2 - ICML'13 Proceedings of the 30th International Conference on International
TI - Inference algorithms for pattern-based CRFs on sequence data
VL - 28
ER -
TY - GEN
AB - We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.
AU - Vladimir Kolmogorov
ID - 2273
TI - Reweighted message passing revisited
ER -
TY - GEN
AB - Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto'92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs -- so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model, using graphs with high "pebbling complexity" and Merkle hash-trees.
AU - Dziembowski, Stefan
AU - Faust, Sebastian
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
ID - 2274
TI - Proofs of Space
ER -
TY - CONF
AB - The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions.
AU - Gridchyn, Igor
AU - Kolmogorov, Vladimir
ID - 2276
TI - Potts model, parametric maxflow and k-submodular functions
ER -
TY - JOUR
AB - Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.
AU - Simmons, Kristina
AU - Prentice, Jason
AU - Tkacik, Gasper
AU - Homann, Jan
AU - Yee, Heather
AU - Palmer, Stephanie
AU - Nelson, Philip
AU - Balasubramanian, Vijay
ID - 2277
IS - 12
JF - PLoS Computational Biology
TI - Transformation of stimulus correlations by the retina
VL - 9
ER -