TY - CONF AB - The aim of this short note is to expound one particular issue that was discussed during the talk [10] given at the symposium ”Researches on isometries as preserver problems and related topics” at Kyoto RIMS. That is, the role of Dirac masses by describing the isometry group of various metric spaces of probability measures. This article is of survey character, and it does not contain any essentially new results.From an isometric point of view, in some cases, metric spaces of measures are similar to C(K)-type function spaces. Similarity means here that their isometries are driven by some nice transformations of the underlying space. Of course, it depends on the particular choice of the metric how nice these transformations should be. Sometimes, as we will see, being a homeomorphism is enough to generate an isometry. But sometimes we need more: the transformation must preserve the underlying distance as well. Statements claiming that isometries in questions are necessarily induced by homeomorphisms are called Banach-Stone-type results, while results asserting that the underlying transformation is necessarily an isometry are termed as isometric rigidity results.As Dirac masses can be considered as building bricks of the set of all Borel measures, a natural question arises:Is it enough to understand how an isometry acts on the set of Dirac masses? Does this action extend uniquely to all measures?In what follows, we will thoroughly investigate this question. AU - Geher, Gyorgy Pal AU - Titkos, Tamas AU - Virosztek, Daniel ID - 7035 T2 - Kyoto RIMS Kôkyûroku TI - Dirac masses and isometric rigidity VL - 2125 ER - TY - BOOK AB - Wissen Sie, was sich hinter künstlicher Intelligenz und maschinellem Lernen verbirgt? Dieses Sachbuch erklärt Ihnen leicht verständlich und ohne komplizierte Formeln die grundlegenden Methoden und Vorgehensweisen des maschinellen Lernens. Mathematisches Vorwissen ist dafür nicht nötig. Kurzweilig und informativ illustriert Lisa, die Protagonistin des Buches, diese anhand von Alltagssituationen. Ein Buch für alle, die in Diskussionen über Chancen und Risiken der aktuellen Entwicklung der künstlichen Intelligenz und des maschinellen Lernens mit Faktenwissen punkten möchten. Auch für Schülerinnen und Schüler geeignet! ED - Kersting, Kristian ED - Lampert, Christoph ED - Rothkopf, Constantin ID - 7171 SN - 978-3-658-26762-9 TI - Wie Maschinen Lernen: Künstliche Intelligenz Verständlich Erklärt ER - TY - CONF AB - The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable surface M_g of genus g. A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z_2-genus of a graph G, denoted by g_0(G), is the minimum g such that G has an independently even drawing on M_g. By a result of Battle, Harary, Kodama and Youngs from 1962, the graph genus is additive over 2-connected blocks. In 2013, Schaefer and Stefankovic proved that the Z_2-genus of a graph is additive over 2-connected blocks as well, and asked whether this result can be extended to so-called 2-amalgamations, as an analogue of results by Decker, Glover, Huneke, and Stahl for the genus. We give the following partial answer. If G=G_1 cup G_2, G_1 and G_2 intersect in two vertices u and v, and G-u-v has k connected components (among which we count the edge uv if present), then |g_0(G)-(g_0(G_1)+g_0(G_2))|<=k+1. For complete bipartite graphs K_{m,n}, with n >= m >= 3, we prove that g_0(K_{m,n})/g(K_{m,n})=1-O(1/n). Similar results are proved also for the Euler Z_2-genus. We express the Z_2-genus of a graph using the minimum rank of partial symmetric matrices over Z_2; a problem that might be of independent interest. AU - Fulek, Radoslav AU - Kyncl, Jan ID - 7401 SN - 1868-8969 T2 - 35th International Symposium on Computational Geometry (SoCG 2019) TI - Z_2-Genus of graphs and minimum rank of partial symmetric matrices VL - 129 ER - TY - CHAP AB - We illustrate the ingredients of the state-of-the-art of model-based approach for the formal design and verification of cyber-physical systems. To capture the interaction between a discrete controller and its continuously evolving environment, we use the formal models of timed and hybrid automata. We explain the steps of modeling and verification in the tools Uppaal and SpaceEx using a case study based on a dual-chamber implantable pacemaker monitoring a human heart. We show how to design a model as a composition of components, how to construct models at varying levels of detail, how to establish that one model is an abstraction of another, how to specify correctness requirements using temporal logic, and how to verify that a model satisfies a logical requirement. AU - Alur, Rajeev AU - Giacobbe, Mirco AU - Henzinger, Thomas A AU - Larsen, Kim G. AU - Mikučionis, Marius ED - Steffen, Bernhard ED - Woeginger, Gerhard ID - 7453 SN - 1611-3349 T2 - Computing and Software Science TI - Continuous-time models for system design and analysis VL - 10000 ER - TY - JOUR AB - We consider an optimal control problem for an abstract nonlinear dissipative evolution equation. The differential constraint is penalized by augmenting the target functional by a nonnegative global-in-time functional which is null-minimized in the evolution equation is satisfied. Different variational settings are presented, leading to the convergence of the penalization method for gradient flows, noncyclic and semimonotone flows, doubly nonlinear evolutions, and GENERIC systems. AU - Portinale, Lorenzo AU - Stefanelli, Ulisse ID - 7550 IS - 2 JF - Advances in Mathematical Sciences and Applications SN - 1343-4373 TI - Penalization via global functionals of optimal-control problems for dissipative evolution VL - 28 ER -