TY - CONF AB - Pseudoentropy has found a lot of important applications to cryptography and complexity theory. In this paper we focus on the foundational problem that has not been investigated so far, namely by how much pseudoentropy (the amount seen by computationally bounded attackers) differs from its information-theoretic counterpart (seen by unbounded observers), given certain limits on attacker’s computational power? We provide the following answer for HILL pseudoentropy, which exhibits a threshold behavior around the size exponential in the entropy amount:– If the attacker size (s) and advantage () satisfy s (formula presented) where k is the claimed amount of pseudoentropy, then the pseudoentropy boils down to the information-theoretic smooth entropy. – If s (formula presented) then pseudoentropy could be arbitrarily bigger than the information-theoretic smooth entropy. Besides answering the posted question, we show an elegant application of our result to the complexity theory, namely that it implies the clas-sical result on the existence of functions hard to approximate (due to Pippenger). In our approach we utilize non-constructive techniques: the duality of linear programming and the probabilistic method. AU - Skórski, Maciej ED - Jäger, Gerhard ED - Steila, Silvia ID - 648 SN - 978-331955910-0 TI - On the complexity of breaking pseudoentropy VL - 10185 ER - TY - CHAP AB - We give a short overview on a recently developed notion of Ricci curvature for discrete spaces. This notion relies on geodesic convexity properties of the relative entropy along geodesics in the space of probability densities, for a metric which is similar to (but different from) the 2-Wasserstein metric. The theory can be considered as a discrete counterpart to the theory of Ricci curvature for geodesic measure spaces developed by Lott–Sturm–Villani. AU - Maas, Jan ED - Najman, Laurent ED - Romon, Pascal ID - 649 SN - 978-3-319-58001-2 T2 - Modern Approaches to Discrete Curvature TI - Entropic Ricci curvature for discrete spaces VL - 2184 ER - TY - CONF AB - In this work we present a short and unified proof for the Strong and Weak Regularity Lemma, based on the cryptographic tech-nique called low-complexity approximations. In short, both problems reduce to a task of finding constructively an approximation for a certain target function under a class of distinguishers (test functions), where dis-tinguishers are combinations of simple rectangle-indicators. In our case these approximations can be learned by a simple iterative procedure, which yields a unified and simple proof, achieving for any graph with density d and any approximation parameter the partition size. The novelty in our proof is: (a) a simple approach which yields both strong and weaker variant, and (b) improvements when d = o(1). At an abstract level, our proof can be seen a refinement and simplification of the “analytic” proof given by Lovasz and Szegedy. AU - Skórski, Maciej ED - Jäger, Gerhard ED - Steila, Silvia ID - 650 SN - 03029743 TI - A cryptographic view of regularity lemmas: Simpler unified proofs and refined bounds VL - 10185 ER - TY - CONF AB - Graph games with omega-regular winning conditions provide a mathematical framework to analyze a wide range of problems in the analysis of reactive systems and programs (such as the synthesis of reactive systems, program repair, and the verification of branching time properties). Parity conditions are canonical forms to specify omega-regular winning conditions. Graph games with parity conditions are equivalent to mu-calculus model checking, and thus a very important algorithmic problem. Symbolic algorithms are of great significance because they provide scalable algorithms for the analysis of large finite-state systems, as well as algorithms for the analysis of infinite-state systems with finite quotient. A set-based symbolic algorithm uses the basic set operations and the one-step predecessor operators. We consider graph games with n vertices and parity conditions with c priorities (equivalently, a mu-calculus formula with c alternations of least and greatest fixed points). While many explicit algorithms exist for graph games with parity conditions, for set-based symbolic algorithms there are only two algorithms (notice that we use space to refer to the number of sets stored by a symbolic algorithm): (a) the basic algorithm that requires O(n^c) symbolic operations and linear space; and (b) an improved algorithm that requires O(n^{c/2+1}) symbolic operations but also O(n^{c/2+1}) space (i.e., exponential space). In this work we present two set-based symbolic algorithms for parity games: (a) our first algorithm requires O(n^{c/2+1}) symbolic operations and only requires linear space; and (b) developing on our first algorithm, we present an algorithm that requires O(n^{c/3+1}) symbolic operations and only linear space. We also present the first linear space set-based symbolic algorithm for parity games that requires at most a sub-exponential number of symbolic operations. AU - Chatterjee, Krishnendu AU - Dvorák, Wolfgang AU - Henzinger, Monika H AU - Loitzenbauer, Veronika ID - 6519 TI - Improved set-based symbolic algorithms for parity games VL - 82 ER - TY - CONF AB - A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if it can be turned into an embedding by an arbitrarily small perturbation. We show that testing, whether a drawing of a planar graph G in the plane is approximable by an embedding, can be carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e., the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs with fixed embeddings. To the best of our knowledge an analogous result was previously known essentially only when G is a cycle. AU - Fulek, Radoslav ID - 6517 TI - Embedding graphs into embedded graphs VL - 92 ER - TY - CONF AB - We present an approach that enables robots to self-organize their sensorimotor behavior from scratch without providing specific information about neither the robot nor its environment. This is achieved by a simple neural control law that increases the consistency between external sensor dynamics and internal neural dynamics of the utterly simple controller. In this way, the embodiment and the agent-environment coupling are the only source of individual development. We show how an anthropomorphic tendon driven arm-shoulder system develops different behaviors depending on that coupling. For instance: Given a bottle half-filled with water, the arm starts to shake it, driven by the physical response of the water. When attaching a brush, the arm can be manipulated into wiping a table, and when connected to a revolvable wheel it finds out how to rotate it. Thus, the robot may be said to discover the affordances of the world. When allowing two (simulated) humanoid robots to interact physically, they engage into a joint behavior development leading to, for instance, spontaneous cooperation. More social effects are observed if the robots can visually perceive each other. Although, as an observer, it is tempting to attribute an apparent intentionality, there is nothing of the kind put in. As a conclusion, we argue that emergent behavior may be much less rooted in explicit intentions, internal motivations, or specific reward systems than is commonly believed. AU - Der, Ralf AU - Martius, Georg S ID - 652 SN - 978-150905069-7 TI - Dynamical self consistency leads to behavioral development and emergent social interactions in robots ER - TY - JOUR AB - Superhydrophobic surfaces reduce the frictional drag between water and solid materials, but this effect is often temporary. The realization of sustained drag reduction has applications for water vehicles and pipeline flows. AU - Hof, Björn ID - 651 IS - 7636 JF - Nature SN - 00280836 TI - Fluid dynamics: Water flows out of touch VL - 541 ER - TY - JOUR AB - The extent of heterogeneity among driver gene mutations present in naturally occurring metastases - that is, treatment-naive metastatic disease - is largely unknown. To address this issue, we carried out 60× whole-genome sequencing of 26 metastases from four patients with pancreatic cancer. We found that identical mutations in known driver genes were present in every metastatic lesion for each patient studied. Passenger gene mutations, which do not have known or predicted functional consequences, accounted for all intratumoral heterogeneity. Even with respect to these passenger mutations, our analysis suggests that the genetic similarity among the founding cells of metastases was higher than that expected for any two cells randomly taken from a normal tissue. The uniformity of known driver gene mutations among metastases in the same patient has critical and encouraging implications for the success of future targeted therapies in advanced-stage disease. AU - Makohon Moore, Alvin AU - Zhang, Ming AU - Reiter, Johannes AU - Božić, Ivana AU - Allen, Benjamin AU - Kundu, Deepanjan AU - Chatterjee, Krishnendu AU - Wong, Fay AU - Jiao, Yuchen AU - Kohutek, Zachary AU - Hong, Jungeui AU - Attiyeh, Marc AU - Javier, Breanna AU - Wood, Laura AU - Hruban, Ralph AU - Nowak, Martin AU - Papadopoulos, Nickolas AU - Kinzler, Kenneth AU - Vogelstein, Bert AU - Iacobuzio Donahue, Christine ID - 653 IS - 3 JF - Nature Genetics SN - 10614036 TI - Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer VL - 49 ER - TY - CONF AB - A memory-hard function (MHF) ƒn with parameter n can be computed in sequential time and space n. Simultaneously, a high amortized parallel area-time complexity (aAT) is incurred per evaluation. In practice, MHFs are used to limit the rate at which an adversary (using a custom computational device) can evaluate a security sensitive function that still occasionally needs to be evaluated by honest users (using an off-the-shelf general purpose device). The most prevalent examples of such sensitive functions are Key Derivation Functions (KDFs) and password hashing algorithms where rate limits help mitigate off-line dictionary attacks. As the honest users' inputs to these functions are often (low-entropy) passwords special attention is given to a class of side-channel resistant MHFs called iMHFs. Essentially all iMHFs can be viewed as some mode of operation (making n calls to some round function) given by a directed acyclic graph (DAG) with very low indegree. Recently, a combinatorial property of a DAG has been identified (called "depth-robustness") which results in good provable security for an iMHF based on that DAG. Depth-robust DAGs have also proven useful in other cryptographic applications. Unfortunately, up till now, all known very depth-robust DAGs are impractically complicated and little is known about their exact (i.e. non-asymptotic) depth-robustness both in theory and in practice. In this work we build and analyze (both formally and empirically) several exceedingly simple and efficient to navigate practical DAGs for use in iMHFs and other applications. For each DAG we: *Prove that their depth-robustness is asymptotically maximal. *Prove bounds of at least 3 orders of magnitude better on their exact depth-robustness compared to known bounds for other practical iMHF. *Implement and empirically evaluate their depth-robustness and aAT against a variety of state-of-the art (and several new) depth-reduction and low aAT attacks. We find that, against all attacks, the new DAGs perform significantly better in practice than Argon2i, the most widely deployed iMHF in practice. Along the way we also improve the best known empirical attacks on the aAT of Argon2i by implementing and testing several heuristic versions of a (hitherto purely theoretical) depth-reduction attack. Finally, we demonstrate practicality of our constructions by modifying the Argon2i code base to use one of the new high aAT DAGs. Experimental benchmarks on a standard off-the-shelf CPU show that the new modifications do not adversely affect the impressive throughput of Argon2i (despite seemingly enjoying significantly higher aAT). AU - Alwen, Joel F AU - Blocki, Jeremiah AU - Harsha, Ben ID - 6527 SN - 9781450349468 T2 - Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security TI - Practical graphs for optimal side-channel resistant memory-hard functions ER - TY - JOUR AB - In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called ‘Engineering the embryo’. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation and modeling of development using stem cells can be used to integrate ideas and expertise from physics, developmental biology and tissue engineering. As we review here, the conference pinpointed some of the challenges arising at the intersection of these fields, along with great enthusiasm for finding new approaches and collaborations. AU - Kicheva, Anna AU - Rivron, Nicolas ID - 654 IS - 5 JF - Development SN - 09501991 TI - Creating to understand – developmental biology meets engineering in Paris VL - 144 ER - TY - CONF AB - This paper studies the complexity of estimating Rényi divergences of discrete distributions: p observed from samples and the baseline distribution q known a priori. Extending the results of Acharya et al. (SODA'15) on estimating Rényi entropy, we present improved estimation techniques together with upper and lower bounds on the sample complexity. We show that, contrarily to estimating Rényi entropy where a sublinear (in the alphabet size) number of samples suffices, the sample complexity is heavily dependent on events occurring unlikely in q, and is unbounded in general (no matter what an estimation technique is used). For any divergence of integer order bigger than 1, we provide upper and lower bounds on the number of samples dependent on probabilities of p and q (the lower bounds hold for non-integer orders as well). We conclude that the worst-case sample complexity is polynomial in the alphabet size if and only if the probabilities of q are non-negligible. This gives theoretical insights into heuristics used in the applied literature to handle numerical instability, which occurs for small probabilities of q. Our result shows that they should be handled with care not only because of numerical issues, but also because of a blow up in the sample complexity. AU - Skórski, Maciej ID - 6526 SN - 9781509040964 T2 - 2017 IEEE International Symposium on Information Theory (ISIT) TI - On the complexity of estimating Rènyi divergences ER - TY - JOUR AB - The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ~1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell. AU - Renault, Thibaud AU - Abraham, Anthony AU - Bergmiller, Tobias AU - Paradis, Guillaume AU - Rainville, Simon AU - Charpentier, Emmanuelle AU - Guet, Calin C AU - Tu, Yuhai AU - Namba, Keiichi AU - Keener, James AU - Minamino, Tohru AU - Erhardt, Marc ID - 655 JF - eLife SN - 2050084X TI - Bacterial flagella grow through an injection diffusion mechanism VL - 6 ER - TY - JOUR AB - Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator. AU - Möller, Barbara AU - Ten Hove, Colette AU - Xiang, Daoquan AU - Williams, Nerys AU - López, Lorena AU - Yoshida, Saiko AU - Smit, Margot AU - Datla, Raju AU - Weijers, Dolf ID - 657 IS - 12 JF - PNAS SN - 00278424 TI - Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo VL - 114 ER - TY - JOUR AB - Human neurons transplanted into a mouse model for Alzheimer’s disease show human-specific vulnerability to β-amyloid plaques and may help to identify new therapeutic targets. AU - Novarino, Gaia ID - 656 IS - 381 JF - Science Translational Medicine SN - 19466234 TI - Modeling Alzheimer's disease in mice with human neurons VL - 9 ER - TY - JOUR AB - With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors "waiting" to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics. AU - Der, Ralf AU - Martius, Georg S ID - 658 IS - MAR JF - Frontiers in Neurorobotics SN - 16625218 TI - Self organized behavior generation for musculoskeletal robots VL - 11 ER - TY - JOUR AB - Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching. AU - Kage, Frieda AU - Winterhoff, Moritz AU - Dimchev, Vanessa AU - Müller, Jan AU - Thalheim, Tobias AU - Freise, Anika AU - Brühmann, Stefan AU - Kollasser, Jana AU - Block, Jennifer AU - Dimchev, Georgi A AU - Geyer, Matthias AU - Schnittler, Hams AU - Brakebusch, Cord AU - Stradal, Theresia AU - Carlier, Marie AU - Sixt, Michael K AU - Käs, Josef AU - Faix, Jan AU - Rottner, Klemens ID - 659 JF - Nature Communications SN - 20411723 TI - FMNL formins boost lamellipodial force generation VL - 8 ER - TY - JOUR AB - Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steadystate growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth. AU - Rickman, Jamie AU - Düllberg, Christian F AU - Cade, Nicholas AU - Griffin, Lewis AU - Surrey, Thomas ID - 660 IS - 13 JF - PNAS SN - 00278424 TI - Steady state EB cap size fluctuations are determined by stochastic microtubule growth and maturation VL - 114 ER - TY - JOUR AB - We report a direct-numerical-simulation study of the Taylor-Couette flow in the quasi-Keplerian regime at shear Reynolds numbers up to (105). Quasi-Keplerian rotating flow has been investigated for decades as a simplified model system to study the origin of turbulence in accretion disks that is not fully understood. The flow in this study is axially periodic and thus the experimental end-wall effects on the stability of the flow are avoided. Using optimal linear perturbations as initial conditions, our simulations find no sustained turbulence: the strong initial perturbations distort the velocity profile and trigger turbulence that eventually decays. AU - Shi, Liang AU - Hof, Björn AU - Rampp, Markus AU - Avila, Marc ID - 662 IS - 4 JF - Physics of Fluids SN - 10706631 TI - Hydrodynamic turbulence in quasi Keplerian rotating flows VL - 29 ER - TY - CONF AB - In this paper, we propose an approach to automatically compute invariant clusters for nonlinear semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(u→, x→) = 0, parametric in u→, which can yield an infinite number of concrete invariants by assigning different values to u→ so that every trajectory of the system can be overapproximated precisely by the intersection of a group of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial right-hand sides, given a template multivariate polynomial g(u→, x→), an invariant cluster can be obtained by first computing the remainder of the Lie derivative of g(u→, x→) divided by g(u→, x→) and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is efficient. AU - Kong, Hui AU - Bogomolov, Sergiy AU - Schilling, Christian AU - Jiang, Yu AU - Henzinger, Thomas A ID - 663 SN - 978-145034590-3 T2 - Proceedings of the 20th International Conference on Hybrid Systems TI - Safety verification of nonlinear hybrid systems based on invariant clusters ER - TY - JOUR AB - Perinatal exposure to penicillin may result in longlasting gut and behavioral changes. AU - Novarino, Gaia ID - 667 IS - 387 JF - Science Translational Medicine SN - 19466234 TI - The antisocial side of antibiotics VL - 9 ER -