TY - JOUR AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e., submanifolds of Rd defined as the zero set of some multivariate multivalued smooth function f:Rd→Rd−n, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M=f−1(0) is to consider its piecewise linear (PL) approximation M^ based on a triangulation T of the ambient space Rd. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ=1/D (and unavoidably exponential in n). Since it is known that for δ=Ω(d2.5), M^ is O(D2)-close and isotopic to M , our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M^ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art. AU - Boissonnat, Jean Daniel AU - Kachanovich, Siargey AU - Wintraecken, Mathijs ID - 12960 IS - 2 JF - SIAM Journal on Computing SN - 0097-5397 TI - Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations VL - 52 ER - TY - JOUR AB - We propose a characterization of discrete analytical spheres, planes and lines in the body-centered cubic (BCC) grid, both in the Cartesian and in the recently proposed alternative compact coordinate system, in which each integer triplet addresses some voxel in the grid. We define spheres and planes through double Diophantine inequalities and investigate their relevant topological features, such as functionality or the interrelation between the thickness of the objects and their connectivity and separation properties. We define lines as the intersection of planes. The number of the planes (up to six) is equal to the number of the pairs of faces of a BCC voxel that are parallel to the line. AU - Čomić, Lidija AU - Largeteau-Skapin, Gaëlle AU - Zrour, Rita AU - Biswas, Ranita AU - Andres, Eric ID - 13134 IS - 10 JF - Pattern Recognition SN - 0031-3203 TI - Discrete analytical objects in the body-centered cubic grid VL - 142 ER - TY - JOUR AB - Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400–600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude. AU - Bunting, Rhys AU - Wodaczek, Felix AU - Torabi, Tina AU - Cheng, Bingqing ID - 13216 IS - 27 JF - Journal of the American Chemical Society KW - Colloid and Surface Chemistry KW - Biochemistry KW - General Chemistry KW - Catalysis SN - 0002-7863 TI - Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane VL - 145 ER - TY - JOUR AB - To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type–specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver. AU - Unterweger, Iris A. AU - Klepstad, Julie AU - Hannezo, Edouard B AU - Lundegaard, Pia R. AU - Trusina, Ala AU - Ober, Elke A. ID - 14426 IS - 10 JF - PLoS Biology TI - Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics VL - 21 ER - TY - CONF AB - Suppose we have two hash functions h1 and h2, but we trust the security of only one of them. To mitigate this worry, we wish to build a hash combiner Ch1,h2 which is secure so long as one of the underlying hash functions is. This question has been well-studied in the regime of collision resistance. In this case, concatenating the two hash function outputs clearly works. Unfortunately, a long series of works (Boneh and Boyen, CRYPTO’06; Pietrzak, Eurocrypt’07; Pietrzak, CRYPTO’08) showed no (noticeably) shorter combiner for collision resistance is possible. In this work, we revisit this pessimistic state of affairs, motivated by the observation that collision-resistance is insufficient for many interesting applications of cryptographic hash functions anyway. We argue the right formulation of the “hash combiner” is to build what we call random oracle (RO) combiners, utilizing stronger assumptions for stronger constructions. Indeed, we circumvent the previous lower bounds for collision resistance by constructing a simple length-preserving RO combiner C˜h1,h2Z1,Z2(M)=h1(M,Z1)⊕h2(M,Z2),where Z1,Z2 are random salts of appropriate length. We show that this extra randomness is necessary for RO combiners, and indeed our construction is somewhat tight with this lower bound. On the negative side, we show that one cannot generically apply the composition theorem to further replace “monolithic” hash functions h1 and h2 by some simpler indifferentiable construction (such as the Merkle-Damgård transformation) from smaller components, such as fixed-length compression functions. Finally, despite this issue, we directly prove collision resistance of the Merkle-Damgård variant of our combiner, where h1 and h2 are replaced by iterative Merkle-Damgård hashes applied to a fixed-length compression function. Thus, we can still subvert the concatenation barrier for collision-resistance combiners while utilizing practically small fixed-length components underneath. AU - Dodis, Yevgeniy AU - Ferguson, Niels AU - Goldin, Eli AU - Hall, Peter AU - Pietrzak, Krzysztof Z ID - 14428 SN - 0302-9743 T2 - 43rd Annual International Cryptology Conference TI - Random oracle combiners: Breaking the concatenation barrier for collision-resistance VL - 14082 ER - TY - CHAP AB - Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS. AU - Leithner, Alexander F AU - Merrin, Jack AU - Sixt, Michael K ED - Baldari, Cosima ED - Dustin, Michael ID - 13052 SN - 1064-3745 T2 - The Immune Synapse TI - En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses VL - 2654 ER - TY - JOUR AB - Let X be a sufficiently large positive integer. We prove that one may choose a subset S of primes with cardinality O(logX) such that a positive proportion of integers less than X can be represented by x2+py2 for at least one p∈S. AU - Diao, Yijie ID - 12406 JF - Acta Arithmetica KW - Algebra KW - Number Theory SN - 0065-1036 TI - Density of the union of positive diagonal binary quadratic forms VL - 207 ER - TY - JOUR AB - Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser. Here we report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature with near-unity cooperativity. Both the stationary and instantaneous responses of the microwave and optical modes comply with the coherent electro-optical interaction, and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration enables wide ranges of applications beyond quantum transductions, from squeezing and quantum non-demolition measurements of microwave fields, to entanglement generation and hybrid quantum networks. AU - Qiu, Liu AU - Sahu, Rishabh AU - Hease, William J AU - Arnold, Georg M AU - Fink, Johannes M ID - 13200 JF - Nature Communications TI - Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action VL - 14 ER - TY - JOUR AB - How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide characterization of the Bayes optimal limits of inference in this model. If the spike is rotation invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message-passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical physics. We thus propose an AMP, inspired by the theory of adaptive Thouless–Anderson–Palmer equations, which is empirically observed to saturate the conjectured theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at strong universality properties. AU - Barbier, Jean AU - Camilli, Francesco AU - Mondelli, Marco AU - Sáenz, Manuel ID - 13315 IS - 30 JF - Proceedings of the National Academy of Sciences of the United States of America TI - Fundamental limits in structured principal component analysis and how to reach them VL - 120 ER - TY - JOUR AB - Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions. AU - Vardi, Ofek AU - Maroudas-Sklare, Naama AU - Kolodny, Yuval AU - Volosniev, Artem AU - Saragovi, Amijai AU - Galili, Nir AU - Ferrera, Stav AU - Ghazaryan, Areg AU - Yuran, Nir AU - Affek, Hagit P. AU - Luz, Boaz AU - Goldsmith, Yonaton AU - Keren, Nir AU - Yochelis, Shira AU - Halevy, Itay AU - Lemeshko, Mikhail AU - Paltiel, Yossi ID - 14037 IS - 32 JF - Proceedings of the National Academy of Sciences of the United States of America TI - Nuclear spin effects in biological processes VL - 120 ER - TY - JOUR AB - We study the eigenvalue trajectories of a time dependent matrix Gt=H+itvv∗ for t≥0, where H is an N×N Hermitian random matrix and v is a unit vector. In particular, we establish that with high probability, an outlier can be distinguished at all times t>1+N−1/3+ϵ, for any ϵ>0. The study of this natural process combines elements of Hermitian and non-Hermitian analysis, and illustrates some aspects of the intrinsic instability of (even weakly) non-Hermitian matrices. AU - Dubach, Guillaume AU - Erdös, László ID - 12683 JF - Electronic Communications in Probability TI - Dynamics of a rank-one perturbation of a Hermitian matrix VL - 28 ER - TY - JOUR AB - We consider the fluctuations of regular functions f of a Wigner matrix W viewed as an entire matrix f (W). Going beyond the well-studied tracial mode, Trf (W), which is equivalent to the customary linear statistics of eigenvalues, we show that Trf (W)A is asymptotically normal for any nontrivial bounded deterministic matrix A. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of f (W) in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. As a main motivation to study CLT in such generality on small mesoscopic scales, we determine the fluctuations in the eigenstate thermalization hypothesis (Phys. Rev. A 43 (1991) 2046–2049), that is, prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. Finally, in the macroscopic regime our result also generalizes (Zh. Mat. Fiz. Anal. Geom. 9 (2013) 536–581, 611, 615) to complex W and to all crossover ensembles in between. The main technical inputs are the recent multiresolvent local laws with traceless deterministic matrices from the companion paper (Comm. Math. Phys. 388 (2021) 1005–1048). AU - Cipolloni, Giorgio AU - Erdös, László AU - Schröder, Dominik J ID - 12761 IS - 1 JF - Annals of Applied Probability SN - 1050-5164 TI - Functional central limit theorems for Wigner matrices VL - 33 ER - TY - JOUR AB - It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least 3 over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thélène that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least 3. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces. AU - Browning, Timothy D AU - Boudec, Pierre Le AU - Sawin, Will ID - 8682 IS - 3 JF - Annals of Mathematics SN - 0003-486X TI - The Hasse principle for random Fano hypersurfaces VL - 197 ER - TY - JOUR AB - Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters’ contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude. AU - Mckerral, Jody C. AU - Kleshnina, Maria AU - Ejov, Vladimir AU - Bartle, Louise AU - Mitchell, James G. AU - Filar, Jerzy A. ID - 12706 IS - 2 JF - PLoS One TI - Empirical parameterisation and dynamical analysis of the allometric Rosenzweig-MacArthur equations VL - 18 ER - TY - JOUR AB - Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an essential role in neuronal activities through interaction with various proteins involved in signaling at membranes. However, the distribution pattern of PI(4,5)P2 and the association with these proteins on the neuronal cell membranes remain elusive. In this study, we established a method for visualizing PI(4,5)P2 by SDS-digested freeze-fracture replica labeling (SDS-FRL) to investigate the quantitative nanoscale distribution of PI(4,5)P2 in cryo-fixed brain. We demonstrate that PI(4,5)P2 forms tiny clusters with a mean size of ∼1000 nm2 rather than randomly distributed in cerebellar neuronal membranes in male C57BL/6J mice. These clusters show preferential accumulation in specific membrane compartments of different cell types, in particular, in Purkinje cell (PC) spines and granule cell (GC) presynaptic active zones. Furthermore, we revealed extensive association of PI(4,5)P2 with CaV2.1 and GIRK3 across different membrane compartments, whereas its association with mGluR1α was compartment specific. These results suggest that our SDS-FRL method provides valuable insights into the physiological functions of PI(4,5)P2 in neurons. AU - Eguchi, Kohgaku AU - Le Monnier, Elodie AU - Shigemoto, Ryuichi ID - 13202 IS - 23 JF - The Journal of Neuroscience SN - 0270-6474 TI - Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons VL - 43 ER - TY - JOUR AB - We apply a variant of the square-sieve to produce an upper bound for the number of rational points of bounded height on a family of surfaces that admit a fibration over P1 whose general fibre is a hyperelliptic curve. The implied constant does not depend on the coefficients of the polynomial defining the surface. AU - Bonolis, Dante AU - Browning, Timothy D ID - 12916 IS - 1 JF - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze SN - 0391-173X TI - Uniform bounds for rational points on hyperelliptic fibrations VL - 24 ER - TY - THES AB - Animals exhibit a remarkable ability to learn and remember new behaviors, skills, and associations throughout their lifetime. These capabilities are made possible thanks to a variety of changes in the brain throughout adulthood, regrouped under the term "plasticity". Some cells in the brain —neurons— and specifically changes in the connections between neurons, the synapses, were shown to be crucial for the formation, selection, and consolidation of memories from past experiences. These ongoing changes of synapses across time are called synaptic plasticity. Understanding how a myriad of biochemical processes operating at individual synapses can somehow work in concert to give rise to meaningful changes in behavior is a fascinating problem and an active area of research. However, the experimental search for the precise plasticity mechanisms at play in the brain is daunting, as it is difficult to control and observe synapses during learning. Theoretical approaches have thus been the default method to probe the plasticity-behavior connection. Such studies attempt to extract unifying principles across synapses and model all observed synaptic changes using plasticity rules: equations that govern the evolution of synaptic strengths across time in neuronal network models. These rules can use many relevant quantities to determine the magnitude of synaptic changes, such as the precise timings of pre- and postsynaptic action potentials, the recent neuronal activity levels, the state of neighboring synapses, etc. However, analytical studies rely heavily on human intuition and are forced to make simplifying assumptions about plasticity rules. In this thesis, we aim to assist and augment human intuition in this search for plasticity rules. We explore whether a numerical approach could automatically discover the plasticity rules that elicit desired behaviors in large networks of interconnected neurons. This approach is dubbed meta-learning synaptic plasticity: learning plasticity rules which themselves will make neuronal networks learn how to solve a desired task. We first write all the potential plasticity mechanisms to consider using a single expression with adjustable parameters. We then optimize these plasticity parameters using evolutionary strategies or Bayesian inference on tasks known to involve synaptic plasticity, such as familiarity detection and network stabilization. We show that these automated approaches are powerful tools, able to complement established analytical methods. By comprehensively screening plasticity rules at all synapse types in realistic, spiking neuronal network models, we discover entire sets of degenerate plausible plasticity rules that reliably elicit memory-related behaviors. Our approaches allow for more robust experimental predictions, by abstracting out the idiosyncrasies of individual plasticity rules, and provide fresh insights on synaptic plasticity in spiking network models. AU - Confavreux, Basile J ID - 14422 SN - 2663 - 337X TI - Synapseek: Meta-learning synaptic plasticity rules ER - TY - THES AB - Superconductivity has many important applications ranging from levitating trains over qubits to MRI scanners. The phenomenon is successfully modeled by Bardeen-Cooper-Schrieffer (BCS) theory. From a mathematical perspective, BCS theory has been studied extensively for systems without boundary. However, little is known in the presence of boundaries. With the help of numerical methods physicists observed that the critical temperature may increase in the presence of a boundary. The goal of this thesis is to understand the influence of boundaries on the critical temperature in BCS theory and to give a first rigorous justification of these observations. On the way, we also study two-body Schrödinger operators on domains with boundaries and prove additional results for superconductors without boundary. BCS theory is based on a non-linear functional, where the minimizer indicates whether the system is superconducting or in the normal, non-superconducting state. By considering the Hessian of the BCS functional at the normal state, one can analyze whether the normal state is possibly a minimum of the BCS functional and estimate the critical temperature. The Hessian turns out to be a linear operator resembling a Schrödinger operator for two interacting particles, but with more complicated kinetic energy. As a first step, we study the two-body Schrödinger operator in the presence of boundaries. For Neumann boundary conditions, we prove that the addition of a boundary can create new eigenvalues, which correspond to the two particles forming a bound state close to the boundary. Second, we need to understand superconductivity in the translation invariant setting. While in three dimensions this has been extensively studied, there is no mathematical literature for the one and two dimensional cases. In dimensions one and two, we compute the weak coupling asymptotics of the critical temperature and the energy gap in the translation invariant setting. We also prove that their ratio is independent of the microscopic details of the model in the weak coupling limit; this property is referred to as universality. In the third part, we study the critical temperature of superconductors in the presence of boundaries. We start by considering the one-dimensional case of a half-line with contact interaction. Then, we generalize the results to generic interactions and half-spaces in one, two and three dimensions. Finally, we compare the critical temperature of a quarter space in two dimensions to the critical temperatures of a half-space and of the full space. AU - Roos, Barbara ID - 14374 SN - 2663 - 337X TI - Boundary superconductivity in BCS theory ER - TY - JOUR AB - We consider the linear BCS equation, determining the BCS critical temperature, in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-dimensional case with point interactions, we prove that the critical temperature is strictly larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave function localizes near the boundary, an effect that cannot be modeled by effective Neumann boundary conditions on the order parameter as often imposed in Ginzburg–Landau theory. We also show that the relative shift in critical temperature vanishes if the coupling constant either goes to zero or to infinity. AU - Hainzl, Christian AU - Roos, Barbara AU - Seiringer, Robert ID - 13207 IS - 4 JF - Journal of Spectral Theory SN - 1664-039X TI - Boundary superconductivity in the BCS model VL - 12 ER - TY - JOUR AB - The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and an environmental component, and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the parental traits. In previous work, we showed that when trait values are determined by the sum of a large number of additive Mendelian factors, each of small effect, one can justify the infinitesimal model as a limit of Mendelian inheritance. In this paper, we show that this result extends to include dominance. We define the model in terms of classical quantities of quantitative genetics, before justifying it as a limit of Mendelian inheritance as the number, M, of underlying loci tends to infinity. As in the additive case, the multivariate normal distribution of trait values across the pedigree can be expressed in terms of variance components in an ancestral population and probabilities of identity by descent determined by the pedigree. Now, with just first-order dominance effects, we require two-, three-, and four-way identities. We also show that, even if we condition on parental trait values, the “shared” and “residual” components of trait values within each family will be asymptotically normally distributed as the number of loci tends to infinity, with an error of order 1/M−−√⁠. We illustrate our results with some numerical examples. AU - Barton, Nicholas H AU - Etheridge, Alison M. AU - Véber, Amandine ID - 14452 IS - 2 JF - Genetics SN - 0016-6731 TI - The infinitesimal model with dominance VL - 225 ER -