TY - CONF
AB - Energies with high-order non-submodular interactions have been shown to be very useful in vision due to their high modeling power. Optimization of such energies, however, is generally NP-hard. A naive approach that works for small problem instances is exhaustive search, that is, enumeration of all possible labelings of the underlying graph. We propose a general minimization approach for large graphs based on enumeration of labelings of certain small patches.
This partial enumeration technique reduces complex high-order energy formulations to pairwise Constraint Satisfaction Problems with unary costs (uCSP), which can be efficiently solved using standard methods like TRW-S. Our approach outperforms a number of existing state-of-the-art algorithms on well known difficult problems (e.g. curvature regularization, stereo, deconvolution); it gives near global minimum and better speed.
Our main application of interest is curvature regularization. In the context of segmentation, our partial enumeration technique allows to evaluate curvature directly on small patches using a novel integral geometry approach.
AU - Olsson, Carl
AU - Ulen, Johannes
AU - Boykov, Yuri
AU - Kolmogorov, Vladimir
ID - 2275
TI - Partial enumeration and curvature regularization
ER -
TY - JOUR
AB - GABAergic inhibitory interneurons control fundamental aspects of neuronal network function. Their functional roles are assumed to be defined by the identity of their input synapses, the architecture of their dendritic tree, the passive and active membrane properties and finally the nature of their postsynaptic targets. Indeed, interneurons display a high degree of morphological and physiological heterogeneity. However, whether their morphological and physiological characteristics are correlated and whether interneuron diversity can be described by a continuum of GABAergic cell types or by distinct classes has remained unclear. Here we perform a detailed morphological and physiological characterization of GABAergic cells in the dentate gyrus, the input region of the hippocampus. To achieve an unbiased and efficient sampling and classification we used knock-in mice expressing the enhanced green fluorescent protein (eGFP) in glutamate decarboxylase 67 (GAD67)-positive neurons and performed cluster analysis. We identified five interneuron classes, each of them characterized by a distinct set of anatomical and physiological parameters. Cross-correlation analysis further revealed a direct relation between morphological and physiological properties indicating that dentate gyrus interneurons fall into functionally distinct classes which may differentially control neuronal network activity.
AU - Hosp, Jonas
AU - Strüber, Michael
AU - Yanagawa, Yuchio
AU - Obata, Kunihiko
AU - Vida, Imre
AU - Jonas, Peter M
AU - Bartos, Marlene
ID - 2285
IS - 2
JF - Hippocampus
TI - Morpho-physiological criteria divide dentate gyrus interneurons into classes
VL - 23
ER -
TY - JOUR
AB - We prove the universality of the β-ensembles with convex analytic potentials and for any β >
0, i.e. we show that the spacing distributions of log-gases at any inverse temperature β coincide with those of the Gaussian β-ensembles.
AU - Erdös, László
AU - Bourgade, Paul
AU - Yau, Horng
ID - 2699
IS - 6
JF - Duke Mathematical Journal
TI - Universality of general β-ensembles
VL - 163
ER -
TY - JOUR
AB - Multi-dimensional mean-payoff and energy games provide the mathematical foundation for the quantitative study of reactive systems, and play a central role in the emerging quantitative theory of verification and synthesis. In this work, we study the strategy synthesis problem for games with such multi-dimensional objectives along with a parity condition, a canonical way to express ω ω -regular conditions. While in general, the winning strategies in such games may require infinite memory, for synthesis the most relevant problem is the construction of a finite-memory winning strategy (if one exists). Our main contributions are as follows. First, we show a tight exponential bound (matching upper and lower bounds) on the memory required for finite-memory winning strategies in both multi-dimensional mean-payoff and energy games along with parity objectives. This significantly improves the triple exponential upper bound for multi energy games (without parity) that could be derived from results in literature for games on vector addition systems with states. Second, we present an optimal symbolic and incremental algorithm to compute a finite-memory winning strategy (if one exists) in such games. Finally, we give a complete characterization of when finite memory of strategies can be traded off for randomness. In particular, we show that for one-dimension mean-payoff parity games, randomized memoryless strategies are as powerful as their pure finite-memory counterparts.
AU - Chatterjee, Krishnendu
AU - Randour, Mickael
AU - Raskin, Jean
ID - 2716
IS - 3-4
JF - Acta Informatica
TI - Strategy synthesis for multi-dimensional quantitative objectives
VL - 51
ER -
TY - JOUR
AB - A robust combiner for hash functions takes two candidate implementations and constructs a hash function which is secure as long as at least one of the candidates is secure. So far, hash function combiners only aim at preserving a single property such as collision-resistance or pseudorandomness. However, when hash functions are used in protocols like TLS they are often required to provide several properties simultaneously. We therefore put forward the notion of robust multi-property combiners and elaborate on different definitions for such combiners. We then propose a combiner that provably preserves (target) collision-resistance, pseudorandomness, and being a secure message authentication code. This combiner satisfies the strongest notion we propose, which requires that the combined function satisfies every security property which is satisfied by at least one of the underlying hash function. If the underlying hash functions have output length n, the combiner has output length 2 n. This basically matches a known lower bound for black-box combiners for collision-resistance only, thus the other properties can be achieved without penalizing the length of the hash values. We then propose a combiner which also preserves the property of being indifferentiable from a random oracle, slightly increasing the output length to 2 n+ω(log n). Moreover, we show how to augment our constructions in order to make them also robust for the one-wayness property, but in this case require an a priory upper bound on the input length.
AU - Fischlin, Marc
AU - Lehmann, Anja
AU - Pietrzak, Krzysztof Z
ID - 2852
IS - 3
JF - Journal of Cryptology
TI - Robust multi-property combiners for hash functions
VL - 27
ER -
TY - CONF
AB - Persistent homology is a recent grandchild of homology that has found use in
science and engineering as well as in mathematics. This paper surveys the method as well
as the applications, neglecting completeness in favor of highlighting ideas and directions.
AU - Edelsbrunner, Herbert
AU - Morozovy, Dmitriy
ID - 2905
TI - Persistent homology: Theory and practice
ER -
TY - CONF
AB - Many questions concerning models in quantum mechanics require a detailed analysis of the spectrum of the corresponding Hamiltonian, a linear operator on a suitable Hilbert space. Of particular relevance for an understanding of the low-temperature properties of a system is the structure of the excitation spectrum, which is the part of the spectrum close to the spectral bottom. We present recent progress on this question for bosonic many-body quantum systems with weak two-body interactions. Such system are currently of great interest, due to their experimental realization in ultra-cold atomic gases. We investigate the accuracy of the Bogoliubov approximations, which predicts that the low-energy spectrum is made up of sums of elementary excitations, with linear dispersion law at low momentum. The latter property is crucial for the superfluid behavior the system.
AU - Seiringer, Robert
ID - 8044
SN - 9788961058063
T2 - Proceeding of the International Congress of Mathematicans
TI - Structure of the excitation spectrum for many-body quantum systems
VL - 3
ER -
TY - JOUR
AB - The main model studied in this paper is a lattice of pendula with a nearest‐neighbor coupling. If the coupling is weak, then the system is near‐integrable and KAM tori fill most of the phase space. For all KAM trajectories the energy of each pendulum stays within a narrow band for all time. Still, we show that for an arbitrarily weak coupling of a certain localized type, the neighboring pendula can exchange energy. In fact, the energy can be transferred between the pendula in any prescribed way.
AU - Kaloshin, Vadim
AU - Levi, Mark
AU - Saprykina, Maria
ID - 8500
IS - 5
JF - Communications on Pure and Applied Mathematics
KW - Applied Mathematics
KW - General Mathematics
SN - 0010-3640
TI - Arnol′d diffusion in a pendulum lattice
VL - 67
ER -
TY - CONF
AB - In this paper we present INTERHORN, a solver for recursion-free Horn clauses. The main application domain of INTERHORN lies in solving interpolation problems arising in software verification. We show how a range of interpolation problems, including path, transition, nested, state/transition and well-founded interpolation can be handled directly by INTERHORN. By detailing these interpolation problems and their Horn clause representations, we hope to encourage the emergence of a common back-end interpolation interface useful for diverse verification tools.
AU - Gupta, Ashutosh
AU - Popeea, Corneliu
AU - Rybalchenko, Andrey
ID - 1702
T2 - Electronic Proceedings in Theoretical Computer Science, EPTCS
TI - Generalised interpolation by solving recursion free-horn clauses
VL - 169
ER -
TY - CONF
AB - It has been long argued that, because of inherent ambiguity and noise, the brain needs to represent uncertainty in the form of probability distributions. The neural encoding of such distributions remains however highly controversial. Here we present a novel circuit model for representing multidimensional real-valued distributions using a spike based spatio-temporal code. Our model combines the computational advantages of the currently competing models for probabilistic codes and exhibits realistic neural responses along a variety of classic measures. Furthermore, the model highlights the challenges associated with interpreting neural activity in relation to behavioral uncertainty and points to alternative population-level approaches for the experimental validation of distributed representations.
AU - Savin, Cristina
AU - Denève, Sophie
ID - 1708
IS - January
TI - Spatio-temporal representations of uncertainty in spiking neural networks
VL - 3
ER -
TY - JOUR
AB - The classical (boolean) notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them) in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces, and how to synthesize an interface from incompatible requirements. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.
AU - Cerny, Pavol
AU - Chmelik, Martin
AU - Henzinger, Thomas A
AU - Radhakrishna, Arjun
ID - 1733
IS - 3
JF - Theoretical Computer Science
TI - Interface simulation distances
VL - 560
ER -
TY - CHAP
AB - The generation of asymmetry, at both cellular and tissue level, is one of the most essential capabilities of all eukaryotic organisms. It mediates basically all multicellular development ranging from embryogenesis and de novo organ formation till responses to various environmental stimuli. In plants, the awe-inspiring number of such processes is regulated by phytohormone auxin and its directional, cell-to-cell transport. The mediators of this transport, PIN auxin transporters, are asymmetrically localized at the plasma membrane, and this polar localization determines the directionality of intercellular auxin flow. Thus, auxin transport contributes crucially to the generation of local auxin gradients or maxima, which instruct given cell to change its developmental program. Here, we introduce and discuss the molecular components and cellular mechanisms regulating the generation and maintenance of cellular PIN polarity, as the general hallmarks of cell polarity in plants.
AU - Baster, Pawel
AU - Friml, Jiří
ED - Zažímalová, Eva
ED - Petrášek, Jan
ED - Benková, Eva
ID - 1806
T2 - Auxin and Its Role in Plant Development
TI - Auxin on the road navigated by cellular PIN polarity
ER -
TY - JOUR
AB - Watermarking techniques for vector graphics dislocate vertices in order to embed imperceptible, yet detectable, statistical features into the input data. The embedding process may result in a change of the topology of the input data, e.g., by introducing self-intersections, which is undesirable or even disastrous for many applications. In this paper we present a watermarking framework for two-dimensional vector graphics that employs conventional watermarking techniques but still provides the guarantee that the topology of the input data is preserved. The geometric part of this framework computes so-called maximum perturbation regions (MPR) of vertices. We propose two efficient algorithms to compute MPRs based on Voronoi diagrams and constrained triangulations. Furthermore, we present two algorithms to conditionally correct the watermarked data in order to increase the watermark embedding capacity and still guarantee topological correctness. While we focus on the watermarking of input formed by straight-line segments, one of our approaches can also be extended to circular arcs. We conclude the paper by demonstrating and analyzing the applicability of our framework in conjunction with two well-known watermarking techniques.
AU - Huber, Stefan
AU - Held, Martin
AU - Meerwald, Peter
AU - Kwitt, Roland
ID - 1816
IS - 1
JF - International Journal of Computational Geometry and Applications
TI - Topology-preserving watermarking of vector graphics
VL - 24
ER -
TY - JOUR
AB - We review recent progress towards a rigorous understanding of the Bogoliubov approximation for bosonic quantum many-body systems. We focus, in particular, on the excitation spectrum of a Bose gas in the mean-field (Hartree) limit. A list of open problems will be discussed at the end.
AU - Seiringer, Robert
ID - 1821
IS - 7
JF - Journal of Mathematical Physics
TI - Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation
VL - 55
ER -
TY - JOUR
AU - Jakšić, Vojkan
AU - Pillet, Claude
AU - Seiringer, Robert
ID - 1822
IS - 7
JF - Journal of Mathematical Physics
TI - Introduction
VL - 55
ER -
TY - CHAP
AB - Hitting and batting tasks, such as tennis forehands, ping-pong strokes, or baseball batting, depend on predictions where the ball can be intercepted and how it can properly be returned to the opponent. These predictions get more accurate over time, hence the behaviors need to be continuously modified. As a result, movement templates with a learned global shape need to be adapted during the execution so that the racket reaches a target position and velocity that will return the ball over to the other side of the net or court. It requires altering learned movements to hit a varying target with the necessary velocity at a specific instant in time. Such a task cannot be incorporated straightforwardly in most movement representations suitable for learning. For example, the standard formulation of the dynamical system based motor primitives (introduced by Ijspeert et al (2002b)) does not satisfy this property despite their flexibility which has allowed learning tasks ranging from locomotion to kendama. In order to fulfill this requirement, we reformulate the Ijspeert framework to incorporate the possibility of specifying a desired hitting point and a desired hitting velocity while maintaining all advantages of the original formulation.We show that the proposed movement template formulation works well in two scenarios, i.e., for hitting a ball on a string with a table tennis racket at a specified velocity and for returning balls launched by a ball gun successfully over the net using forehand movements.
AU - Muelling, Katharina
AU - Kroemer, Oliver
AU - Lampert, Christoph
AU - Schölkopf, Bernhard
ED - Kober, Jens
ED - Peters, Jan
ID - 1829
T2 - Learning Motor Skills
TI - Movement templates for learning of hitting and batting
VL - 97
ER -
TY - JOUR
AB - We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n vertices are bounded by O(n3) and O(n10), in the convex and general case, respectively. We then apply similar methods to prove an (Formula presented.) upper bound on the Ramsey number of a path with n ordered vertices.
AU - Cibulka, Josef
AU - Gao, Pu
AU - Krcál, Marek
AU - Valla, Tomáš
AU - Valtr, Pavel
ID - 1842
IS - 1
JF - Discrete & Computational Geometry
TI - On the geometric ramsey number of outerplanar graphs
VL - 53
ER -
TY - JOUR
AB - Local protein interactions ("molecular context" effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations.
AU - Risso, Valeria
AU - Manssour Triedo, Fadia
AU - Delgado Delgado, Asuncion
AU - Arco, Rocio
AU - Barroso Deljesús, Alicia
AU - Inglés Prieto, Álvaro
AU - Godoy Ruiz, Raquel
AU - Gavira, Josè
AU - Gaucher, Eric
AU - Ibarra Molero, Beatriz
AU - Sánchez Ruiz, Jose
ID - 1844
IS - 2
JF - Molecular Biology and Evolution
TI - Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history
VL - 32
ER -
TY - JOUR
AB - To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs [1, 2]. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner.
AU - Sassi, Massimiliano
AU - Ali, Olivier
AU - Boudon, Frédéric
AU - Cloarec, Gladys
AU - Abad, Ursula
AU - Cellier, Coralie
AU - Chen, Xu
AU - Gilles, Benjamin
AU - Milani, Pascale
AU - Friml, Jirí
AU - Vernoux, Teva
AU - Godin, Christophe
AU - Hamant, Olivier
AU - Traas, Jan
ID - 1852
IS - 19
JF - Current Biology
TI - An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis
VL - 24
ER -
TY - CONF
AB - Wireless sensor networks (WSNs) composed of low-power, low-cost sensor nodes are expected to form the backbone of future intelligent networks for a broad range of civil, industrial and military applications. These sensor nodes are often deployed through random spreading, and function in dynamic environments. Many applications of WSNs such as pollution tracking, forest fire detection, and military surveillance require knowledge of the location of constituent nodes. But the use of technologies such as GPS on all nodes is prohibitive due to power and cost constraints. So, the sensor nodes need to autonomously determine their locations. Most localization techniques use anchor nodes with known locations to determine the position of remaining nodes. Localization techniques have two conflicting requirements. On one hand, an ideal localization technique should be computationally simple and on the other hand, it must be resistant to attacks that compromise anchor nodes. In this paper, we propose a computationally light-weight game theoretic secure localization technique and demonstrate its effectiveness in comparison to existing techniques.
AU - Jha, Susmit
AU - Tripakis, Stavros
AU - Seshia, Sanjit
AU - Chatterjee, Krishnendu
ID - 1853
TI - Game theoretic secure localization in wireless sensor networks
ER -