TY - JOUR AB - Classical models with complex energy landscapes represent a perspective avenue for the near-term application of quantum simulators. Until now, many theoretical works studied the performance of quantum algorithms for models with a unique ground state. However, when the classical problem is in a so-called clustering phase, the ground state manifold is highly degenerate. As an example, we consider a 3-XORSAT model defined on simple hypergraphs. The degeneracy of classical ground state manifold translates into the emergence of an extensive number of Z2 symmetries, which remain intact even in the presence of a quantum transverse magnetic field. We establish a general duality approach that restricts the quantum problem to a given sector of conserved Z2 charges and use it to study how the outcome of the quantum adiabatic algorithm depends on the hypergraph geometry. We show that the tree hypergraph which corresponds to a classically solvable instance of the 3-XORSAT problem features a constant gap, whereas the closed hypergraph encounters a second-order phase transition with a gap vanishing as a power-law in the problem size. The duality developed in this work provides a practical tool for studies of quantum models with classically degenerate energy manifold and reveals potential connections between glasses and gauge theories. AU - Medina Ramos, Raimel A AU - Serbyn, Maksym ID - 10545 IS - 6 JF - Physical Review A SN - 2469-9926 TI - Duality approach to quantum annealing of the 3-variable exclusive-or satisfiability problem (3-XORSAT) VL - 104 ER - TY - CONF AB - We present DAG-Rider, the first asynchronous Byzantine Atomic Broadcast protocol that achieves optimal resilience, optimal amortized communication complexity, and optimal time complexity. DAG-Rider is post-quantum safe and ensures that all values proposed by correct processes eventually get delivered. We construct DAG-Rider in two layers: In the first layer, processes reliably broadcast their proposals and build a structured Directed Acyclic Graph (DAG) of the communication among them. In the second layer, processes locally observe their DAGs and totally order all proposals with no extra communication. AU - Keidar, Idit AU - Kokoris Kogias, Eleftherios AU - Naor, Oded AU - Spiegelman, Alexander ID - 10554 SN - 978-1-4503-8548-0 T2 - Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing TI - All You Need is DAG ER - TY - JOUR AB - Genetic adaptation and phenotypic plasticity facilitate the migration into new habitats and enable organisms to cope with a rapidly changing environment. In contrast to genetic adaptation that spans multiple generations as an evolutionary process, phenotypic plasticity allows acclimation within the life-time of an organism. Genetic adaptation and phenotypic plasticity are usually studied in isolation, however, only by including their interactive impact, we can understand acclimation and adaptation in nature. We aimed to explore the contribution of adaptation and plasticity in coping with an abiotic (salinity) and a biotic (Vibrio bacteria) stressor using six different populations of the broad-nosed pipefish Syngnathus typhle that originated from either high [14–17 Practical Salinity Unit (PSU)] or low (7–11 PSU) saline environments along the German coastline of the Baltic Sea. We exposed wild caught animals, to either high (15 PSU) or low (7 PSU) salinity, representing native and novel salinity conditions and allowed animals to mate. After male pregnancy, offspring was split and each half was exposed to one of the two salinities and infected with Vibrio alginolyticus bacteria that were evolved at either of the two salinities in a fully reciprocal design. We investigated life-history traits of fathers and expression of 47 target genes in mothers and offspring. Pregnant males originating from high salinity exposed to low salinity were highly susceptible to opportunistic fungi infections resulting in decreased offspring size and number. In contrast, no signs of fungal infection were identified in fathers originating from low saline conditions suggesting that genetic adaptation has the potential to overcome the challenges encountered at low salinity. Offspring from parents with low saline origin survived better at low salinity suggesting genetic adaptation to low salinity. In addition, gene expression analyses of juveniles indicated patterns of local adaptation, trans-generational plasticity and developmental plasticity. In conclusion, our study suggests that pipefish are locally adapted to the low salinity in their environment, however, they are retaining phenotypic plasticity, which allows them to also cope with ancestral salinity levels and prevailing pathogens. AU - Goehlich, Henry AU - Sartoris, Linda AU - Wagner, Kim-Sara AU - Wendling, Carolin C. AU - Roth, Olivia ID - 10568 JF - Frontiers in Ecology and Evolution KW - ecology KW - evolution KW - behavior and systematics KW - trans-generational plasticity KW - genetic adaptation KW - local adaptation KW - phenotypic plasticity KW - Baltic Sea KW - climate change KW - salinity KW - syngnathids SN - 2296-701X TI - Pipefish locally adapted to low salinity in the Baltic Sea retain phenotypic plasticity to cope with ancestral salinity levels VL - 9 ER - TY - JOUR AB - A facile approach for developing an interfacial solar evaporator by heat localization of solar-thermal energy conversion at water-air liquid composed by in-situ polymerization of Fe2O3 nanoparticles (Fe2O3@PPy) deposited over a facial sponge is proposed. The demonstrated system consists of a floating solar receiver having a vertically cross-linked microchannel for wicking up saline water. The in situ polymerized Fe2O3@PPy interfacial layer promotes diffuse reflection and its rough black surface allows Omni-directional solar absorption (94%) and facilitates efficient thermal localization at the water/air interface and offers a defect-rich surface to promote heat localization (41.9 °C) and excellent thermal management due to cellulosic content. The self-floating composite foam reveals continuous vapors generation at a rate of 1.52 kg m−2 h−1 under one 1 kW m−2 and profound evaporating efficiency (95%) without heat losses that dissipates in its surroundings. Indeed, long-term evaporation experiments reveal the negligible disparity in continuous evaporation rate (33.84 kg m−2/8.3 h) receiving two sun solar intensity, and ensures the stability of the device under intense seawater conditions synchronized with excellent salt rejection potential. More importantly, Raman spectroscopy investigation validates the orange dye rejection via Fe2O3@PPy solar evaporator. The combined advantages of high efficiency, self-floating capability, multimedia rejection, low cost, and this configuration are promising for producing large-scale solar steam generating systems appropriate for commercial clean water yield due to their scalable fabrication. AU - Lu, Yuzheng AU - Arshad, Naila AU - Irshad, Muhammad Sultan AU - Ahmed, Iftikhar AU - Ahmad, Shafiq AU - Alshahrani, Lina Abdullah AU - Yousaf, Muhammad AU - Sayed, Abdelaty Edrees AU - Nauman, Muhammad ID - 10586 IS - 12 JF - Crystals TI - Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination VL - 11 ER - TY - JOUR AB - For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical poison frog Allobates femoralis ( Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of the two, and compared their reaction to a water control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multi-modal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and probably need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in poison frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles. AU - Szabo, B AU - Mangione, R AU - Rath, M AU - Pašukonis, A AU - Reber, SA AU - Oh, Jinook AU - Ringler, M AU - Ringler, E ID - 10569 IS - 24 JF - Journal of Experimental Biology SN - 0022-0949 TI - Naïve poison frog tadpoles use bi-modal cues to avoid insect predators but not heterospecific predatory tadpoles VL - 224 ER - TY - JOUR AB - The choice of the boundary conditions in mechanical problems has to reflect the interaction of the considered material with the surface. Still the assumption of the no-slip condition is preferred in order to avoid boundary terms in the analysis and slipping effects are usually overlooked. Besides the “static slip models”, there are phenomena that are not accurately described by them, e.g. at the moment when the slip changes rapidly, the wall shear stress and the slip can exhibit a sudden overshoot and subsequent relaxation. When these effects become significant, the so-called dynamic slip phenomenon occurs. We develop a mathematical analysis of Navier–Stokes-like problems with a dynamic slip boundary condition, which requires a proper generalization of the Gelfand triplet and the corresponding function space setting. AU - Abbatiello, Anna AU - Bulíček, Miroslav AU - Maringová, Erika ID - 10575 IS - 11 JF - Mathematical Models and Methods in Applied Sciences SN - 0218-2025 TI - On the dynamic slip boundary condition for Navier-Stokes-like problems VL - 31 ER - TY - JOUR AB - The understanding of material appearance perception is a complex problem due to interactions between material reflectance, surface geometry, and illumination. Recently, Serrano et al. collected the largest dataset to date with subjective ratings of material appearance attributes, including glossiness, metallicness, sharpness and contrast of reflections. In this work, we make use of their dataset to investigate for the first time the impact of the interactions between illumination, geometry, and eight different material categories in perceived appearance attributes. After an initial analysis, we select for further analysis the four material categories that cover the largest range for all perceptual attributes: fabric, plastic, ceramic, and metal. Using a cumulative link mixed model (CLMM) for robust regression, we discover interactions between these material categories and four representative illuminations and object geometries. We believe that our findings contribute to expanding the knowledge on material appearance perception and can be useful for many applications, such as scene design, where any particular material in a given shape can be aligned with dominant classes of illumination, so that a desired strength of appearance attributes can be achieved. AU - Chen, Bin AU - Wang, Chao AU - Piovarci, Michael AU - Seidel, Hans Peter AU - Didyk, Piotr AU - Myszkowski, Karol AU - Serrano, Ana ID - 10574 IS - 12 JF - Visual Computer SN - 0178-2789 TI - The effect of geometry and illumination on appearance perception of different material categories VL - 37 ER - TY - JOUR AB - How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5′-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering. AU - Munjal, Akankshi AU - Hannezo, Edouard B AU - Tsai, Tony Y.C. AU - Mitchison, Timothy J. AU - Megason, Sean G. ID - 10573 IS - 26 JF - Cell SN - 0092-8674 TI - Extracellular hyaluronate pressure shaped by cellular tethers drives tissue morphogenesis VL - 184 ER - TY - JOUR AB - In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner of the game. Such games are central in formal methods since they model the interaction between a non-terminating system and its environment. In bidding games the players bid for the right to move the token: in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Bidding games are known to have a clean and elegant mathematical structure that relies on the ability of the players to submit arbitrarily small bids. Many applications, however, require a fixed granularity for the bids, which can represent, for example, the monetary value expressed in cents. We study, for the first time, the combination of discrete-bidding and infinite-duration games. Our most important result proves that these games form a large determined subclass of concurrent games, where determinacy is the strong property that there always exists exactly one player who can guarantee winning the game. In particular, we show that, in contrast to non-discrete bidding games, the mechanism with which tied bids are resolved plays an important role in discrete-bidding games. We study several natural tie-breaking mechanisms and show that, while some do not admit determinacy, most natural mechanisms imply determinacy for every pair of initial budgets. AU - Aghajohari, Milad AU - Avni, Guy AU - Henzinger, Thomas A ID - 10674 IS - 1 JF - Logical Methods in Computer Science KW - computer science KW - computer science and game theory KW - logic in computer science TI - Determinacy in discrete-bidding infinite-duration games VL - 17 ER - TY - CONF AB - We study Multi-party computation (MPC) in the setting of subversion, where the adversary tampers with the machines of honest parties. Our goal is to construct actively secure MPC protocols where parties are corrupted adaptively by an adversary (as in the standard adaptive security setting), and in addition, honest parties’ machines are compromised. The idea of reverse firewalls (RF) was introduced at EUROCRYPT’15 by Mironov and Stephens-Davidowitz as an approach to protecting protocols against corruption of honest parties’ devices. Intuitively, an RF for a party P is an external entity that sits between P and the outside world and whose scope is to sanitize P ’s incoming and outgoing messages in the face of subversion of their computer. Mironov and Stephens-Davidowitz constructed a protocol for passively-secure two-party computation. At CRYPTO’20, Chakraborty, Dziembowski and Nielsen constructed a protocol for secure computation with firewalls that improved on this result, both by extending it to multi-party computation protocol, and considering active security in the presence of static corruptions. In this paper, we initiate the study of RF for MPC in the adaptive setting. We put forward a definition for adaptively secure MPC in the reverse firewall setting, explore relationships among the security notions, and then construct reverse firewalls for MPC in this stronger setting of adaptive security. We also resolve the open question of Chakraborty, Dziembowski and Nielsen by removing the need for a trusted setup in constructing RF for MPC. Towards this end, we construct reverse firewalls for adaptively secure augmented coin tossing and adaptively secure zero-knowledge protocols and obtain a constant round adaptively secure MPC protocol in the reverse firewall setting without setup. Along the way, we propose a new multi-party adaptively secure coin tossing protocol in the plain model, that is of independent interest. AU - Chakraborty, Suvradip AU - Ganesh, Chaya AU - Pancholi, Mahak AU - Sarkar, Pratik ID - 10609 SN - 0302-9743 T2 - 27th International Conference on the Theory and Application of Cryptology and Information Security TI - Reverse firewalls for adaptively secure MPC without setup VL - 13091 ER - TY - JOUR AB - Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s). AU - Godard, Benoit G AU - Dumollard, Remi AU - Heisenberg, Carl-Philipp J AU - Mcdougall, Alex ID - 10606 JF - eLife TI - Combined effect of cell geometry and polarity domains determines the orientation of unequal division VL - 10 ER - TY - JOUR AB - The evidence linking innate immunity mechanisms and neurodegenerative diseases is growing, but the specific mechanisms are incompletely understood. Experimental data suggest that microglial TLR4 mediates the uptake and clearance of α-synuclein also termed synucleinophagy. The accumulation of misfolded α-synuclein throughout the brain is central to Parkinson's disease (PD). The distribution and progression of the pathology is often attributed to the propagation of α-synuclein. Here, we apply a classical α-synuclein propagation model of prodromal PD in wild type and TLR4 deficient mice to study the role of TLR4 in the progression of the disease. Our data suggest that TLR4 deficiency facilitates the α-synuclein seed spreading associated with reduced lysosomal activity of microglia. Three months after seed inoculation, more pronounced proteinase K-resistant α-synuclein inclusion pathology is observed in mice with TLR4 deficiency. The facilitated propagation of α-synuclein is associated with early loss of dopamine transporter (DAT) signal in the striatum and loss of dopaminergic neurons in substantia nigra pars compacta of TLR4 deficient mice. These new results support TLR4 signaling as a putative target for disease modification to slow the progression of PD and related disorders. AU - Venezia, Serena AU - Kaufmann, Walter AU - Wenning, Gregor K. AU - Stefanova, Nadia ID - 10607 JF - Parkinsonism & Related Disorders SN - 1353-8020 TI - Toll-like receptor 4 deficiency facilitates α-synuclein propagation and neurodegeneration in a mouse model of prodromal Parkinson's disease VL - 91 ER - TY - JOUR AB - The surface states of 3D topological insulators in general have negligible quantum oscillations (QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs give rise to finite-frequency QOs, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as 'shadow surface states'. Moreover, we show that the sufficient next-nearest neighbor out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs beyond the context of cubic TKIs. AU - Ghazaryan, Areg AU - Nica, Emilian M. AU - Erten, Onur AU - Ghaemi, Pouyan ID - 10628 IS - 12 JF - New Journal of Physics SN - 1367-2630 TI - Shadow surface states in topological Kondo insulators VL - 23 ER - TY - JOUR AB - We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule to the droplet. AU - Cherepanov, Igor AU - Bighin, Giacomo AU - Schouder, Constant A. AU - Chatterley, Adam S. AU - Albrechtsen, Simon H. AU - Muñoz, Alberto Viñas AU - Christiansen, Lars AU - Stapelfeldt, Henrik AU - Lemeshko, Mikhail ID - 10631 IS - 6 JF - Physical Review A SN - 2469-9926 TI - Excited rotational states of molecules in a superfluid VL - 104 ER - TY - CONF AB - We thank Emmanuel Abbe and Min Ye for providing us the implementation of RPA decoding. D. Fathollahi and M. Mondelli are partially supported by the 2019 Lopez-Loreta Prize. N. Farsad is supported by Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI), John R. Evans Leader Fund. S. A. Hashemi is supported by a Postdoctoral Fellowship from NSERC. AU - Fathollahi, Dorsa AU - Farsad, Nariman AU - Hashemi, Seyyed Ali AU - Mondelli, Marco ID - 10597 SN - 978-1-5386-8210-4 T2 - 2021 IEEE International Symposium on Information Theory TI - Sparse multi-decoder recursive projection aggregation for Reed-Muller codes ER - TY - CONF AB - Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations, with the cost of nominal performance drop. While adversarial training appears to enhance the robustness and safety of a deep model deployed in open-world decision-critical applications, counterintuitively, it induces undesired behaviors in robot learning settings. In this paper, we show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects, namely transient, systematic, and conditional errors. We first generalize adversarial training to a safety-domain optimization scheme allowing for more generic specifications. We then prove that such a learning process tends to cause certain error profiles. We support our theoretical results by a thorough experimental safety analysis in a robot-learning task. Our results suggest that adversarial training is not yet ready for robot learning. AU - Lechner, Mathias AU - Hasani, Ramin AU - Grosu, Radu AU - Rus, Daniela AU - Henzinger, Thomas A ID - 10666 SN - 1050-4729 T2 - 2021 IEEE International Conference on Robotics and Automation TI - Adversarial training is not ready for robot learning ER - TY - JOUR AB - In this paper, we investigate the distribution of the maximum of partial sums of families of m -periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of ℓ -adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of m -periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp. AU - Autissier, Pascal AU - Bonolis, Dante AU - Lamzouri, Youness ID - 10711 IS - 7 JF - Compositio Mathematica KW - Algebra and Number Theory SN - 0010-437X TI - The distribution of the maximum of partial sums of Kloosterman sums and other trace functions VL - 157 ER - TY - JOUR AB - Thermoelectric materials are engines that convert heat into an electrical current. Intuitively, the efficiency of this process depends on how many electrons (charge carriers) can move and how easily they do so, how much energy those moving electrons transport, and how easily the temperature gradient is maintained. In terms of material properties, an excellent thermoelectric material requires a high electrical conductivity σ, a high Seebeck coefficient S (a measure of the induced thermoelectric voltage as a function of temperature gradient), and a low thermal conductivity κ. The challenge is that these three properties are strongly interrelated in a conflicting manner (1). On page 722 of this issue, Roychowdhury et al. (2) have found a way to partially break these ties in silver antimony telluride (AgSbTe2) with the addition of cadmium (Cd) cations, which increase the ordering in this inherently disordered thermoelectric material. AU - Liu, Yu AU - Ibáñez, Maria ID - 10809 IS - 6530 JF - Science KW - multidisciplinary SN - 0036-8075 TI - Tidying up the mess VL - 371 ER - TY - JOUR AB - The cost-effective conversion of low-grade heat into electricity using thermoelectric devices requires developing alternative materials and material processing technologies able to reduce the currently high device manufacturing costs. In this direction, thermoelectric materials that do not rely on rare or toxic elements such as tellurium or lead need to be produced using high-throughput technologies not involving high temperatures and long processes. Bi2Se3 is an obvious possible Te-free alternative to Bi2Te3 for ambient temperature thermoelectric applications, but its performance is still low for practical applications, and additional efforts toward finding proper dopants are required. Here, we report a scalable method to produce Bi2Se3 nanosheets at low synthesis temperatures. We studied the influence of different dopants on the thermoelectric properties of this material. Among the elements tested, we demonstrated that Sn doping resulted in the best performance. Sn incorporation resulted in a significant improvement to the Bi2Se3 Seebeck coefficient and a reduction in the thermal conductivity in the direction of the hot-press axis, resulting in an overall 60% improvement in the thermoelectric figure of merit of Bi2Se3. AU - Li, Mengyao AU - Zhang, Yu AU - Zhang, Ting AU - Zuo, Yong AU - Xiao, Ke AU - Arbiol, Jordi AU - Llorca, Jordi AU - Liu, Yu AU - Cabot, Andreu ID - 10858 IS - 7 JF - Nanomaterials KW - General Materials Science KW - General Chemical Engineering SN - 2079-4991 TI - Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping VL - 11 ER - TY - JOUR AB - Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis. AU - Stahnke, Stephanie AU - Döring, Hermann AU - Kusch, Charly AU - de Gorter, David J.J. AU - Dütting, Sebastian AU - Guledani, Aleks AU - Pleines, Irina AU - Schnoor, Michael AU - Sixt, Michael K AU - Geffers, Robert AU - Rohde, Manfred AU - Müsken, Mathias AU - Kage, Frieda AU - Steffen, Anika AU - Faix, Jan AU - Nieswandt, Bernhard AU - Rottner, Klemens AU - Stradal, Theresia E.B. ID - 10834 IS - 10 JF - Current Biology KW - General Agricultural and Biological Sciences KW - General Biochemistry KW - Genetics and Molecular Biology SN - 0960-9822 TI - Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion VL - 31 ER -