TY - CONF
AB - Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n2/ log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Nowak, Martin
ID - 551
SN - 978-395977046-0
T2 - Leibniz International Proceedings in Informatics
TI - Faster Monte Carlo algorithms for fixation probability of the Moran process on undirected graphs
VL - 83
ER -
TY - CONF
AB - Graph games provide the foundation for modeling and synthesis of reactive processes. Such games are played over graphs where the vertices are controlled by two adversarial players. We consider graph games where the objective of the first player is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a meanpayoff condition). There are two variants of the problem, namely, the threshold problem where the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases ensuring the qualitative parity objective. The previous best-known algorithms for game graphs with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value W for mean-payoff objectives, are as follows: O(nd+1 . m . w) for the threshold problem, and O(nd+2 · m · W) for the value problem. Our main contributions are faster algorithms, and the running times of our algorithms are as follows: O(nd-1 · m ·W) for the threshold problem, and O(nd · m · W · log(n · W)) for the value problem. For mean-payoff parity objectives with two priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games (without conjunction with parity objectives). Our results are relevant in synthesis of reactive systems with both functional requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective).
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Svozil, Alexander
ID - 552
SN - 978-395977046-0
T2 - Leibniz International Proceedings in Informatics
TI - Faster algorithms for mean payoff parity games
VL - 83
ER -
TY - CONF
AB - We consider two player, zero-sum, finite-state concurrent reachability games, played for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. Player 1 wins iff a designated goal state is eventually visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed. Our main results are as follows: We show that: (i) the optimal bound on the patience of optimal and -optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary.
AU - Chatterjee, Krishnendu
AU - Hansen, Kristofer
AU - Ibsen-Jensen, Rasmus
ID - 553
SN - 978-395977046-0
T2 - Leibniz International Proceedings in Informatics
TI - Strategy complexity of concurrent safety games
VL - 83
ER -
TY - DATA
AB - Strong amplifiers of natural selection
AU - Pavlogiannis, Andreas
AU - Tkadlec, Josef
AU - Chatterjee, Krishnendu
AU - Nowak , Martin
ID - 5559
KW - natural selection
TI - Strong amplifiers of natural selection
ER -
TY - DATA
AB - This repository contains the data collected for the manuscript "Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity".
The data is compressed into a single archive. Within the archive, different folders correspond to figures of the main text and the SI of the related publication.
Data is saved as plain text, with each folder containing a separate readme file describing the format. Typically, the data is from fluorescence microscopy measurements of single cells growing in a microfluidic "mother machine" device, and consists of relevant values (primarily arbitrary unit or normalized fluorescence measurements, and division times / growth rates) after raw microscopy images have been processed, segmented, and their features extracted, as described in the methods section of the related publication.
AU - Bergmiller, Tobias
AU - Andersson, Anna M
AU - Tomasek, Kathrin
AU - Balleza, Enrique
AU - Kiviet, Daniel
AU - Hauschild, Robert
AU - Tkacik, Gasper
AU - Guet, Calin C
ID - 5560
KW - single cell microscopy
KW - mother machine microfluidic device
KW - AcrAB-TolC pump
KW - multi-drug efflux
KW - Escherichia coli
TI - Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity
ER -
TY - DATA
AB - Graph matching problems as described in "Active Graph Matching for Automatic Joint Segmentation and Annotation of C. Elegans." by Kainmueller, Dagmar and Jug, Florian and Rother, Carsten and Myers, Gene, MICCAI 2014. Problems are in OpenGM2 hdf5 format (see http://hciweb2.iwr.uni-heidelberg.de/opengm/) and a custom text format used by the feature matching solver described in "Feature Correspondence via Graph Matching: Models and Global Optimization." by Lorenzo Torresani, Vladimir Kolmogorov and Carsten Rother, ECCV 2008, code at http://pub.ist.ac.at/~vnk/software/GraphMatching-v1.02.src.zip.
AU - Kainmueller, Dagmar
AU - Jug, Florian
AU - Rother, Carsten
AU - Meyers, Gene
ID - 5561
KW - graph matching
KW - feature matching
KW - QAP
KW - MAP-inference
TI - Graph matching problems for annotating C. Elegans
ER -
TY - DATA
AB - This data was collected as part of the study [1]. It consists of preprocessed multi-electrode array recording from 160 salamander retinal ganglion cells responding to 297 repeats of a 19 s natural movie. The data is available in two formats: (1) a .mat file containing an array with dimensions “number of repeats” x “number of neurons” x “time in a repeat”; (2) a zipped .txt file containing the same data represented as an array with dimensions “number of neurons” x “number of samples”, where the number of samples is equal to the product of the number of repeats and timebins within a repeat. The time dimension is divided into 20 ms time windows, and the array is binary indicating whether a given cell elicited at least one spike in a given time window during a particular repeat. See the reference below for details regarding collection and preprocessing:
[1] Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ II. Searching for Collective Behavior in a Large Network of Sensory Neurons. PLoS Comput Biol. 2014;10(1):e1003408.
AU - Marre, Olivier
AU - Tkacik, Gasper
AU - Amodei, Dario
AU - Schneidman, Elad
AU - Bialek, William
AU - Berry, Michael
ID - 5562
KW - multi-electrode recording
KW - retinal ganglion cells
TI - Multi-electrode array recording from salamander retinal ganglion cells
ER -
TY - DATA
AB - MATLAB code and processed datasets available for reproducing the results in:
Lukačišin, M.*, Landon, M.*, Jajoo, R*. (2016) Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.
*equal contributions
AU - Lukacisin, Martin
ID - 5563
TI - MATLAB analysis code for 'Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast'
ER -
TY - DATA
AB - Compressed Fastq files with whole-genome sequencing data of IS-wt strain D and clones from four evolved populations (A11, C08, C10, D08). Information on this data collection is available in the Methods Section of the primary publication.
AU - Steinrück, Magdalena
AU - Guet, Calin C
ID - 5564
TI - Fastq files for "Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection"
ER -
TY - DATA
AB - One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions.
The Video is licensed under a CC BY NC ND license.
AU - Von Wangenheim, Daniel
AU - Hauschild, Robert
AU - Friml, Jirí
ID - 5565
TI - Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel
ER -
TY - DATA
AB - Current minimal version of TipTracker
AU - Hauschild, Robert
ID - 5566
KW - tool
KW - tracking
KW - confocal microscopy
TI - Live tracking of moving samples in confocal microscopy for vertically grown roots
ER -
TY - DATA
AB - Immunological synapse DC-Tcells
AU - Leithner, Alexander F
ID - 5567
KW - Immunological synapse
TI - Immunological synapse DC-Tcells
ER -
TY - DATA
AB - Includes source codes, test cases, and example data used in the thesis Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Also includes pre-built binaries of the HyENA library, but not sources - please contact the HyENA authors to obtain these sources if required (https://mech.tugraz.at/hyena)
AU - Hahn, David
ID - 5568
KW - Boundary elements
KW - brittle fracture
KW - computer graphics
KW - fracture simulation
TI - Source codes: Brittle fracture simulation with boundary elements for computer graphics
ER -
TY - JOUR
AB - PURPOSE. Gene therapy of retinal ganglion cells (RGCs) has promise as a powerful therapeutic for the rescue and regeneration of these cells after optic nerve damage. However, early after damage, RGCs undergo atrophic changes, including gene silencing. It is not known if these changes will deleteriously affect transduction and transgene expression, or if the therapeutic protein can influence reactivation of the endogenous genome. METHODS. Double-transgenic mice carrying a Rosa26-(LoxP)-tdTomato reporter, and a mutant allele for the proapoptotic Bax gene were reared. The Bax mutant blocks apoptosis, but RGCs still exhibit nuclear atrophy and gene silencing. At times ranging from 1 hour to 4 weeks after optic nerve crush (ONC), eyes received an intravitreal injection of AAV2 virus carrying the Cre recombinase. Successful transduction was monitored by expression of the tdTomato reporter. Immunostaining was used to localize tdTomato expression in select cell types. RESULTS. Successful transduction of RGCs was achieved at all time points after ONC using AAV2 expressing Cre from the phosphoglycerate kinase (Pgk) promoter, but not the CMV promoter. ONC promoted an increase in the transduction of cell types in the inner nuclear layer, including Müller cells and rod bipolar neurons. There was minimal evidence of transduction of amacrine cells and astrocytes in the inner retina or optic nerve. CONCLUSIONS. Damaged RGCs can be transduced and at least some endogenous genes can be subsequently activated. Optic nerve damage may change retinal architecture to allow greater penetration of an AAV2 virus to transduce several additional cell types in the inner nuclear layer.
AU - Nickells, Robert
AU - Schmitt, Heather
AU - Maes, Margaret E
AU - Schlamp, Cassandra
ID - 557
IS - 14
JF - Investigative Ophthalmology and Visual Science
SN - 01460404
TI - AAV2 mediated transduction of the mouse retina after optic nerve injury
VL - 58
ER -
TY - DATA
AB - Matlab script to calculate the forward migration indexes (/) from TrackMate spot-statistics files.
AU - Hauschild, Robert
ID - 5570
KW - Cell migration
KW - tracking
KW - forward migration index
KW - FMI
TI - Forward migration indexes
ER -
TY - DATA
AB - This folder contains all the data used in each of the main figures of "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology" (Kelemen, R., Vicoso, B.), as well as in the supplementary figures.
AU - Vicoso, Beatriz
ID - 5571
TI - Data for "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology"
ER -
TY - DATA
AB - Code described in the Supplementary Methods of "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology" (Kelemen, R., Vicoso, B.)
AU - Vicoso, Beatriz
ID - 5572
TI - Code for "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology"
ER -
TY - JOUR
AB - Immune specificity is the degree to which a host’s immune system discriminates among various pathogens or antigenic variants. Vertebrate immune memory is highly specific due to antibody responses. On the other hand, some invertebrates show immune priming, i.e. improved survival after secondary exposure to a previously encountered pathogen. Until now, specificity of priming has only been demonstrated via the septic infection route or when live pathogens were used for priming. Therefore, we tested for specificity in the oral priming route in the red flour beetle, Tribolium castaneum. For priming, we used pathogen-free supernatants derived from three different strains of the entomopathogen, Bacillus thuringiensis, which express different Cry toxin variants known for their toxicity against this beetle. Subsequent exposure to the infective spores showed that oral priming was specific for two naturally occurring strains, while a third engineered strain did not induce any priming effect. Our data demonstrate that oral immune priming with a non-infectious bacterial agent can be specific, but the priming effect is not universal across all bacterial strains.
AU - Futo, Momir
AU - Sell, Marie
AU - Kutzer, Megan
AU - Kurtz, Joachim
ID - 558
IS - 12
JF - Biology Letters
SN - 17449561
TI - Specificity of oral immune priming in the red flour beetle Tribolium castaneum
VL - 13
ER -
TY - CONF
AB - Proofs of space (PoS) were suggested as more ecological and economical alternative to proofs of work, which are currently used in blockchain designs like Bitcoin. The existing PoS are based on rather sophisticated graph pebbling lower bounds. Much simpler and in several aspects more efficient schemes based on inverting random functions have been suggested, but they don’t give meaningful security guarantees due to existing time-memory trade-offs. In particular, Hellman showed that any permutation over a domain of size N can be inverted in time T by an algorithm that is given S bits of auxiliary information whenever (Formula presented). For functions Hellman gives a weaker attack with S2· T≈ N2 (e.g., S= T≈ N2/3). To prove lower bounds, one considers an adversary who has access to an oracle f: [ N] → [N] and can make T oracle queries. The best known lower bound is S· T∈ Ω(N) and holds for random functions and permutations. We construct functions that provably require more time and/or space to invert. Specifically, for any constant k we construct a function [N] → [N] that cannot be inverted unless Sk· T∈ Ω(Nk) (in particular, S= T≈ (Formula presented). Our construction does not contradict Hellman’s time-memory trade-off, because it cannot be efficiently evaluated in forward direction. However, its entire function table can be computed in time quasilinear in N, which is sufficient for the PoS application. Our simplest construction is built from a random function oracle g: [N] × [N] → [ N] and a random permutation oracle f: [N] → N] and is defined as h(x) = g(x, x′) where f(x) = π(f(x′)) with π being any involution without a fixed point, e.g. flipping all the bits. For this function we prove that any adversary who gets S bits of auxiliary information, makes at most T oracle queries, and inverts h on an ϵ fraction of outputs must satisfy S2· T∈ Ω(ϵ2N2).
AU - Abusalah, Hamza M
AU - Alwen, Joel F
AU - Cohen, Bram
AU - Khilko, Danylo
AU - Pietrzak, Krzysztof Z
AU - Reyzin, Leonid
ID - 559
SN - 978-331970696-2
TI - Beyond Hellman’s time-memory trade-offs with applications to proofs of space
VL - 10625
ER -
TY - JOUR
AB - In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14, 1477–1500 (doi:10.4310/CMS.2016.v14. n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ? {4, 5, . . .}, there exist d-dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two (d = 2) and three (d = 3) space dimensions.
AU - Gerencser, Mate
AU - Jentzen, Arnulf
AU - Salimova, Diyora
ID - 560
IS - 2207
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
SN - 13645021
TI - On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions
VL - 473
ER -