TY - JOUR
AB - The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in antiphase with Fabry-Pérot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations that include realistic graphene-superconductor interfaces and find a good qualitative agreement.
AU - Nanda, Gaurav
AU - Aguilera Servin, Juan L
AU - Rakyta, Péter
AU - Kormányos, Andor
AU - Kleiner, Reinhold
AU - Koelle, Dieter
AU - Watanabe, Kazuo
AU - Taniguchi, Takashi
AU - Vandersypen, Lieven
AU - Goswami, Srijit
ID - 988
IS - 6
JF - Nano Letters
SN - 15306984
TI - Current-phase relation of ballistic graphene Josephson junctions
VL - 17
ER -
TY - CONF
AB - We present a generalized optimal transport model in which the mass-preserving constraint for the L2-Wasserstein distance is relaxed by introducing a source term in the continuity equation. The source term is also incorporated in the path energy by means of its squared L2-norm in time of a functional with linear growth in space. This extension of the original transport model enables local density modulations, which is a desirable feature in applications such as image warping and blending. A key advantage of the use of a functional with linear growth in space is that it allows for singular sources and sinks, which can be supported on points or lines. On a technical level, the L2-norm in time ensures a disintegration of the source in time, which we use to obtain the well-posedness of the model and the existence of geodesic paths. The numerical discretization is based on the proximal splitting approach [18] and selected numerical test cases show the potential of the proposed approach. Furthermore, the approach is applied to the warping and blending of textures.
AU - Maas, Jan
AU - Rumpf, Martin
AU - Simon, Stefan
ED - Lauze, François
ED - Dong, Yiqiu
ED - Bjorholm Dahl, Anders
ID - 989
SN - 03029743
TI - Transport based image morphing with intensity modulation
VL - 10302
ER -
TY - JOUR
AB - Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations.
AU - Sachdeva, Himani
AU - Barton, Nicholas H
ID - 990
IS - 6
JF - Evolution; International Journal of Organic Evolution
SN - 00143820
TI - Divergence and evolution of assortative mating in a polygenic trait model of speciation with gene flow
VL - 71
ER -
TY - JOUR
AB - Synaptotagmin 7 (Syt7) was originally identified as a slow Ca2+ sensor for lysosome fusion, but its function at fast synapses is controversial. The paper by Luo and Südhof (2017) in this issue of Neuron shows that at the calyx of Held in the auditory brainstem Syt7 triggers asynchronous release during stimulus trains, resulting in reliable and temporally precise high-frequency transmission. Thus, a slow Ca2+ sensor contributes to the fast signaling properties of the calyx synapse.
AU - Chen, Chong
AU - Jonas, Peter M
ID - 991
IS - 4
JF - Neuron
SN - 08966273
TI - Synaptotagmins: That’s why so many
VL - 94
ER -
TY - THES
AB - An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of
variables, a finite domain of labels, and a set of constraints, each constraint acting on
a subset of the variables. The goal is to find an assignment of labels to its variables
that satisfies all constraints (or decide whether one exists). If we allow more general
“soft” constraints, which come with (possibly infinite) costs of particular assignments,
we obtain instances from a richer class called Valued Constraint Satisfaction Problem
(VCSP). There the goal is to find an assignment with minimum total cost.
In this thesis, we focus (assuming that P
6
=
NP) on classifying computational com-
plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core
content of the work. In one of them, we consider VCSPs parametrized by a constraint
language, that is the set of “soft” constraints allowed to form the instances, and finish
the complexity classification modulo (missing pieces of) complexity classification for
analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect
matching algorithm. This generalization contributes to complexity classfications in two
ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean
CSPs in which every variable may appear in at most two constraints and second, it
settles full classification of Boolean CSPs with planar drawing (again parametrized by a
constraint language).
AU - Rolinek, Michal
ID - 992
TI - Complexity of constraint satisfaction
ER -
TY - JOUR
AB - In real-world applications, observations are often constrained to a small fraction of a system. Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system, and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences about a system’s aggregated properties. To overcome the bias, we derive analytically a subsampling scaling framework that is applicable to different observables, including distributions of neuronal avalanches, of number of people infected during an epidemic outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the underlying full system, how to apply it to distinguish critical from subcritical systems, and how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling to neuronal avalanche models and to recordings from developing neural networks. We show that only mature, but not young networks follow power-law scaling, indicating self-organization to criticality during development.
AU - Levina (Martius), Anna
AU - Priesemann, Viola
ID - 993
JF - Nature Communications
SN - 20411723
TI - Subsampling scaling
VL - 8
ER -
TY - JOUR
AB - The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment.
AU - Cherepanov, Igor
AU - Lemeshko, Mikhail
ID - 994
IS - 3
JF - Physical Review Materials
TI - Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules
VL - 1
ER -
TY - JOUR
AB - Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists of a quantum rotor dressed by a many-particle field of boson excitations, and can be formed out of, for example, a molecule or a nonspherical atom in superfluid helium, or out of an electron coupled to lattice phonons or a Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic rules. These rules extend the machinery of the graphical theory of angular momentum - well known from theoretical atomic spectroscopy - to the case where an environment with an infinite number of degrees of freedom is present. In particular, we show that each diagram can be interpreted as a 'skeleton', which enforces angular momentum conservation, dressed by an additional many-body contribution. This connection between the angulon theory and the graphical theory of angular momentum is particularly important as it allows to systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the technique, we calculate the 1- and 2-loop contributions to the angulon self-energy, the spectral function, and the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order quantities in a more compact way compared to the variational approaches.
AU - Bighin, Giacomo
AU - Lemeshko, Mikhail
ID - 995
IS - 8
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 24699950
TI - Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment
VL - 96
ER -
TY - JOUR
AB - Iodine (I 2 ) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos 2 θ 2D ⟩ , is measured as a function of the laser intensity. The results are well described by ⟨cos 2 θ 2D ⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a ∼ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of ⟨cos 2 θ 2D ⟩ achieved in He droplets exceed 0.96.
AU - Shepperson, Benjamin
AU - Chatterley, Adam
AU - Søndergaard, Anders
AU - Christiansen, Lars
AU - Lemeshko, Mikhail
AU - Stapelfeldt, Henrik
ID - 996
IS - 1
JF - The Journal of Chemical Physics
SN - 00219606
TI - Strongly aligned molecules inside helium droplets in the near-adiabatic regime
VL - 147
ER -
TY - JOUR
AB - Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems.
AU - Yakaboylu, Enderalp
AU - Deuchert, Andreas
AU - Lemeshko, Mikhail
ID - 997
IS - 23
JF - APS Physics, Physical Review Letters
SN - 00319007
TI - Emergence of non-abelian magnetic monopoles in a quantum impurity problem
VL - 119
ER -
TY - CONF
AB - A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a class-incremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively. iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
AU - Rebuffi, Sylvestre Alvise
AU - Kolesnikov, Alexander
AU - Sperl, Georg
AU - Lampert, Christoph
ID - 998
SN - 978-153860457-1
TI - iCaRL: Incremental classifier and representation learning
VL - 2017
ER -
TY - CHAP
AB - We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b, d) such that the following holds. If F is a finite family of subsets of Rd such that βi(∩G)≤b for any G⊊F and every 0 ≤ i ≤ [d/2]-1 then F has Helly number at most h(b, d). Here βi denotes the reduced Z2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these [d/2] first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex K, some well-behaved chain map C*(K)→C*(Rd).
AU - Goaoc, Xavier
AU - Paták, Pavel
AU - Patakova, Zuzana
AU - Tancer, Martin
AU - Wagner, Uli
ED - Loebl, Martin
ED - Nešetřil, Jaroslav
ED - Thomas, Robin
ID - 424
SN - 978-331944479-6
T2 - A Journey through Discrete Mathematics: A Tribute to Jiri Matousek
TI - Bounding helly numbers via betti numbers
ER -
TY - CONF
AB - Parallel implementations of stochastic gradient descent (SGD) have received significant research attention, thanks to its excellent scalability properties. A fundamental barrier when parallelizing SGD is the high bandwidth cost of communicating gradient updates between nodes; consequently, several lossy compresion heuristics have been proposed, by which nodes only communicate quantized gradients. Although effective in practice, these heuristics do not always converge. In this paper, we propose Quantized SGD (QSGD), a family of compression schemes with convergence guarantees and good practical performance. QSGD allows the user to smoothly trade off communication bandwidth and convergence time: nodes can adjust the number of bits sent per iteration, at the cost of possibly higher variance. We show that this trade-off is inherent, in the sense that improving it past some threshold would violate information-theoretic lower bounds. QSGD guarantees convergence for convex and non-convex objectives, under asynchrony, and can be extended to stochastic variance-reduced techniques. When applied to training deep neural networks for image classification and automated speech recognition, QSGD leads to significant reductions in end-to-end training time. For instance, on 16GPUs, we can train the ResNet-152 network to full accuracy on ImageNet 1.8 × faster than the full-precision variant.
AU - Alistarh, Dan-Adrian
AU - Grubic, Demjan
AU - Li, Jerry
AU - Tomioka, Ryota
AU - Vojnović, Milan
ID - 431
SN - 10495258
TI - QSGD: Communication-efficient SGD via gradient quantization and encoding
VL - 2017
ER -
TY - CONF
AB - Recently there has been significant interest in training machine-learning models at low precision: by reducing precision, one can reduce computation and communication by one order of magnitude. We examine training at reduced precision, both from a theoretical and practical perspective, and ask: is it possible to train models at end-to-end low precision with provable guarantees? Can this lead to consistent order-of-magnitude speedups? We mainly focus on linear models, and the answer is yes for linear models. We develop a simple framework called ZipML based on one simple but novel strategy called double sampling. Our ZipML framework is able to execute training at low precision with no bias, guaranteeing convergence, whereas naive quanti- zation would introduce significant bias. We val- idate our framework across a range of applica- tions, and show that it enables an FPGA proto- type that is up to 6.5 × faster than an implemen- tation using full 32-bit precision. We further de- velop a variance-optimal stochastic quantization strategy and show that it can make a significant difference in a variety of settings. When applied to linear models together with double sampling, we save up to another 1.7 × in data movement compared with uniform quantization. When training deep networks with quantized models, we achieve higher accuracy than the state-of-the- art XNOR-Net.
AU - Zhang, Hantian
AU - Li, Jerry
AU - Kara, Kaan
AU - Alistarh, Dan-Adrian
AU - Liu, Ji
AU - Zhang, Ce
ID - 432
SN - 978-151085514-4
T2 - Proceedings of Machine Learning Research
TI - ZipML: Training linear models with end-to-end low precision, and a little bit of deep learning
VL - 70
ER -
TY - CHAP
AB - Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy generation, contributing to the proton motive force used to produce ATP. It couples the transfer of two electrons between NADH and quinone to translocation of four protons across the membrane. It is the largest protein assembly of bacterial and mitochondrial respiratory chains, composed, in mammals, of up to 45 subunits with a total molecular weight of ∼1 MDa. Bacterial enzyme is about half the size, providing the important “minimal” model of complex I. The l-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. Previously, we have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus and of the membrane domain from Escherichia coli, followed by the atomic structure of intact, entire complex I from T. thermophilus. Recently, we have solved by cryo-EM a first complete atomic structure of mammalian (ovine) mitochondrial complex I. Core subunits are well conserved from the bacterial version, whilst supernumerary subunits form an interlinked, stabilizing shell around the core. Subunits containing additional cofactors, including Zn ion, NADPH and phosphopantetheine, probably have regulatory roles. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The structure of mammalian enzyme provides many insights into complex I mechanism, assembly, maturation and dysfunction, allowing detailed molecular analysis of disease-causing mutations.
AU - Sazanov, Leonid A
ED - Wikström, Mårten
ID - 444
SN - 978-1-78262-865-1
T2 - Mechanisms of primary energy transduction in biology
TI - Structure of respiratory complex I: “Minimal” bacterial and “de luxe” mammalian versions
ER -
TY - JOUR
AB - We consider last passage percolation (LPP) models with exponentially distributed random variables, which are linked to the totally asymmetric simple exclusion process (TASEP). The competition interface for LPP was introduced and studied in Ferrari and Pimentel (2005a) for cases where the corresponding exclusion process had a rarefaction fan. Here we consider situations with a shock and determine the law of the fluctuations of the competition interface around its deter- ministic law of large number position. We also study the multipoint distribution of the LPP around the shock, extending our one-point result of Ferrari and Nejjar (2015).
AU - Ferrari, Patrik
AU - Nejjar, Peter
ID - 447
JF - Revista Latino-Americana de Probabilidade e Estatística
TI - Fluctuations of the competition interface in presence of shocks
VL - 9
ER -
TY - JOUR
AB - Most kinesin motors move in only one direction along microtubules. Members of the kinesin-5 subfamily were initially described as unidirectional plus-end-directed motors and shown to produce piconewton forces. However, some fungal kinesin-5 motors are bidirectional. The force production of a bidirectional kinesin-5 has not yet been measured. Therefore, it remains unknown whether the mechanism of the unconventional minus-end-directed motility differs fundamentally from that of plus-end-directed stepping. Using force spectroscopy, we have measured here the forces that ensembles of purified budding yeast kinesin-5 Cin8 produce in microtubule gliding assays in both plus- and minus-end direction. Correlation analysis of pause forces demonstrated that individual Cin8 molecules produce additive forces in both directions of movement. In ensembles, Cin8 motors were able to produce single-motor forces up to a magnitude of ∼1.5 pN. Hence, these properties appear to be conserved within the kinesin-5 subfamily. Force production was largely independent of the directionality of movement, indicating similarities between the motility mechanisms for both directions. These results provide constraints for the development of models for the bidirectional motility mechanism of fission yeast kinesin-5 and provide insight into the function of this mitotic motor.
AU - Fallesen, Todd
AU - Roostalu, Johanna
AU - Düllberg, Christian F
AU - Pruessner, Gunnar
AU - Surrey, Thomas
ID - 453
IS - 9
JF - Biophysical Journal
TI - Ensembles of bidirectional kinesin Cin8 produce additive forces in both directions of movement
VL - 113
ER -
TY - JOUR
AB - The social insects bees, wasps, ants, and termites are species-rich, occur in many habitats, and often constitute a large part of the biomass. Many are also invasive, including species of termites, the red imported fire ant, and the Argentine ant. While invasive social insects have been a problem in Southern Europe for some time, Central Europa was free of invasive ant species until recently because most ants are adapted to warmer climates. Only in the 1990s, did Lasius neglectus, a close relative of the common black garden ant, arrive in Germany. First described in 1990 based on individuals collected in Budapest, the species has since been detected for example in France, Germany, Spain, England, and Kyrgyzstan. The species is spread with soil during construction work or plantings, and L. neglectus therefore is often found in parks and botanical gardens. Another invasive ant now spreading in southern Germany is Formica fuscocinerea, which occurs along rivers, including in the sandy floodplains of the river Isar. As is typical of pioneer species, F. fuscocinerea quickly becomes extremely abundant and therefore causes problems for example on playgrounds in Munich. All invasive ant species are characterized by cooperation across nests, leading to strongly interconnected, very large super-colonies. The resulting dominance results in the extinction of native ant species as well as other arthropod species and thus in the reduction of biodiversity.
AU - Cremer, Sylvia
ID - 459
JF - Rundgespräche Forum Ökologie
TI - Invasive Ameisen in Europa: Wie sie sich ausbreiten und die heimische Fauna verändern
VL - 46
ER -
TY - CONF
AB - Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.
AU - Camus, Nicolas
AU - Yakaboylu, Enderalp
AU - Fechner, Lutz
AU - Klaiber, Michael
AU - Laux, Martin
AU - Mi, Yonghao
AU - Hatsagortsyan, Karen
AU - Pfeifer, Thomas
AU - Keitel, Cristoph
AU - Moshammer, Robert
ID - 313
IS - 1
SN - 17426588
TI - Experimental evidence for Wigner's tunneling time
VL - 999
ER -
TY - THES
AB - Bacteria and their pathogens – phages – are the most abundant living entities on Earth. Throughout their coevolution, bacteria have evolved multiple immune systems to overcome the ubiquitous threat from the phages. Although the molecu- lar details of these immune systems’ functions are relatively well understood, their epidemiological consequences for the phage-bacterial communities have been largely neglected. In this thesis we employed both experimental and theoretical methods to explore whether herd and social immunity may arise in bacterial popu- lations. Using our experimental system consisting of Escherichia coli strains with a CRISPR based immunity to the T7 phage we show that herd immunity arises in phage-bacterial communities and that it is accentuated when the populations are spatially structured. By fitting a mathematical model, we inferred expressions for the herd immunity threshold and the velocity of spread of a phage epidemic in partially resistant bacterial populations, which both depend on the bacterial growth rate, phage burst size and phage latent period. We also investigated the poten- tial for social immunity in Streptococcus thermophilus and its phage 2972 using a bioinformatic analysis of potentially coding short open reading frames with a signalling signature, encoded within the CRISPR associated genes. Subsequently, we tested one identified potentially signalling peptide and found that its addition to a phage-challenged culture increases probability of survival of bacteria two fold, although the results were only marginally significant. Together, these results demonstrate that the ubiquitous arms races between bacteria and phages have further consequences at the level of the population.
AU - Payne, Pavel
ID - 6291
TI - Bacterial herd and social immunity to phages
ER -
TY - THES
AB - Plant hormone auxin and its transport between cells belong to the most important
mechanisms controlling plant development. Auxin itself could change localization of PINs and
thereby control direction of its own flow. We performed an expression profiling experiment
in Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally
regulated by auxin signalling. We identified several novel regulators and performed a detailed
characterization of the transcription factor WRKY23 (At2g47260) and its role in auxin
feedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that
WRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance,
typical polar auxin transport processes such as gravitropism and leaf vascular pattern
formation were disturbed by interfering with WRKY23 function.
In order to identify direct targets of WRKY23, we performed consequential expression
profiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative
WRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to
the groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE
TRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino
acid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback
on PIN repolarization, identified its transcriptional regulation, we propose a potential
mechanism of its action. Moreover, we identified also a member of receptor-like protein
kinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1;
LRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described
its transcriptional behaviour, subcellular localization. Based on global expression data, we
tried to identify ligand responsible for mechanism of signalling and suggest signalling partner
and interactors. Additionally, we described role of novel phytohormone group, strigolactone,
in auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this
field.
Our results provide first insights into an auxin transcriptional network targeting PIN
localization and thus regulating plant development. We highlighted WRKY23 transcriptional
network and characterised its mediatory role in plant development. We identified direct
effectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and
PIN-dependent auxin transport processes.
AU - Prat, Tomas
ID - 1127
TI - Identification of novel regulators of PIN polarity and development of novel auxin sensor
ER -
TY - CONF
AB - In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, which required that annotated training data must be available for all tasks, we consider a new setting, in which for some tasks, potentially most of them, only unlabeled training data is provided. Consequently, to solve all tasks, information must be transferred between tasks with labels and tasks without labels. Focusing on an instance-based transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. We state and prove a generalization bound that covers both scenarios and derive from it an algorithm for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. We also illustrate the effectiveness of the algorithm on synthetic and real data.
AU - Pentina, Anastasia
AU - Lampert, Christoph
ID - 999
SN - 9781510855144
TI - Multi-task learning with labeled and unlabeled tasks
VL - 70
ER -
TY - JOUR
AB - We generalize winning conditions in two-player games by adding a structural acceptance condition called obligations. Obligations are orthogonal to the linear winning conditions that define whether a play is winning. Obligations are a declaration that player 0 can achieve a certain value from a configuration. If the obligation is met, the value of that configuration for player 0 is 1. We define the value in such games and show that obligation games are determined. For Markov chains with Borel objectives and obligations, and finite turn-based stochastic parity games with obligations we give an alternative and simpler characterization of the value function. Based on this simpler definition we show that the decision problem of winning finite turn-based stochastic parity games with obligations is in NP∩co-NP. We also show that obligation games provide a game framework for reasoning about p-automata. © 2017 The Association for Symbolic Logic.
AU - Chatterjee, Krishnendu
AU - Piterman, Nir
ID - 684
IS - 2
JF - Journal of Symbolic Logic
SN - 0022-4812
TI - Obligation blackwell games and p-automata
VL - 82
ER -
TY - CHAP
AB - Bacterial cytokinesis is commonly initiated by the Z-ring, a dynamic cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin-like GTPase, that like its eukaryotic relative forms protein filaments in the presence of GTP. Since the discovery of the Z-ring 25 years ago, various models for the role of FtsZ have been suggested. However, important information about the architecture and dynamics of FtsZ filaments during cytokinesis is still missing. One reason for this lack of knowledge has been the small size of bacteria, which has made it difficult to resolve the orientation and dynamics of individual FtsZ filaments in the Z-ring. While superresolution microscopy experiments have helped to gain more information about the organization of the Z-ring in the dividing cell, they were not yet able to elucidate a mechanism of how FtsZ filaments reorganize during assembly and disassembly of the Z-ring. In this chapter, we explain how to use an in vitro reconstitution approach to investigate the self-organization of FtsZ filaments recruited to a biomimetic lipid bilayer by its membrane anchor FtsA. We show how to perform single-molecule experiments to study the behavior of individual FtsZ monomers during the constant reorganization of the FtsZ-FtsA filament network. We describe how to analyze the dynamics of single molecules and explain why this information can help to shed light onto possible mechanism of Z-ring constriction. We believe that similar experimental approaches will be useful to study the mechanism of membrane-based polymerization of other cytoskeletal systems, not only from prokaryotic but also eukaryotic origin.
AU - Baranova, Natalia
AU - Loose, Martin
ED - Echard, Arnaud
ID - 1213
SN - 0091679X
T2 - Cytokinesis
TI - Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers
VL - 137
ER -
TY - GEN
AB - Across the nervous system, certain population spiking patterns are observed far more frequently than others. A hypothesis about this structure is that these collective activity patterns function as population codewords–collective modes–carrying information distinct from that of any single cell. We investigate this phenomenon in recordings of ∼150 retinal ganglion cells, the retina’s output. We develop a novel statistical model that decomposes the population response into modes; it predicts the distribution of spiking activity in the ganglion cell population with high accuracy. We found that the modes represent localized features of the visual stimulus that are distinct from the features represented by single neurons. Modes form clusters of activity states that are readily discriminated from one another. When we repeated the same visual stimulus, we found that the same mode was robustly elicited. These results suggest that retinal ganglion cells’ collective signaling is endowed with a form of error-correcting code–a principle that may hold in brain areas beyond retina.
AU - Prentice, Jason
AU - Marre, Olivier
AU - Ioffe, Mark
AU - Loback, Adrianna
AU - Tkačik, Gašper
AU - Berry, Michael
ID - 9709
TI - Data from: Error-robust modes of the retinal population code
ER -
TY - JOUR
AB - Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects.
AU - Barton, Nicholas H
ID - 1199
JF - Heredity
TI - How does epistasis influence the response to selection?
VL - 118
ER -
TY - JOUR
AB - RNA Polymerase II pauses and backtracks during transcription, with many consequences for gene expression and cellular physiology. Here, we show that the energy required to melt double-stranded nucleic acids in the transcription bubble predicts pausing in Saccharomyces cerevisiae far more accurately than nucleosome roadblocks do. In addition, the same energy difference also determines when the RNA polymerase backtracks instead of continuing to move forward. This data-driven model corroborates—in a genome wide and quantitative manner—previous evidence that sequence-dependent thermodynamic features of nucleic acids influence both transcriptional pausing and backtracking.
AU - Lukacisin, Martin
AU - Landon, Matthieu
AU - Jajoo, Rishi
ID - 1029
IS - 3
JF - PLoS One
SN - 19326203
TI - Sequence-specific thermodynamic properties of nucleic acids influence both transcriptional pausing and backtracking in yeast
VL - 12
ER -
TY - JOUR
AB - Immune cells communicate using cytokine signals, but the quantitative rules of this communication aren't clear. In this issue of Immunity, Oyler-Yaniv et al. (2017) suggest that the distribution of a cytokine within a lymphatic organ is primarily governed by the local density of cells consuming it.
AU - Assen, Frank P
AU - Sixt, Michael K
ID - 664
IS - 4
JF - Immunity
SN - 10747613
TI - The dynamic cytokine niche
VL - 46
ER -
TY - JOUR
AB - Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.
AU - Ukai, Hikari
AU - Kawahara, Aiko
AU - Hirayama, Keiko
AU - Case, Matthew J
AU - Aino, Shotaro
AU - Miyabe, Masahiro
AU - Wakita, Ken
AU - Oogi, Ryohei
AU - Kasayuki, Michiyo
AU - Kawashima, Shihomi
AU - Sugimoto, Shunichi
AU - Chikamatsu, Kanako
AU - Nitta, Noritaka
AU - Koga, Tsuneyuki
AU - Shigemoto, Ryuichi
AU - Takai, Toshiyuki
AU - Ito, Isao
ID - 682
IS - 6
JF - PLoS One
SN - 19326203
TI - PirB regulates asymmetries in hippocampal circuitry
VL - 12
ER -
TY - JOUR
AB - Mutator strains are expected to evolve when the availability and effect of beneficial mutations are high enough to counteract the disadvantage from deleterious mutations that will inevitably accumulate. As the population becomes more adapted to its environment, both availability and effect of beneficial mutations necessarily decrease and mutation rates are predicted to decrease. It has been shown that certain molecular mechanisms can lead to increased mutation rates when the organism finds itself in a stressful environment. While this may be a correlated response to other functions, it could also be an adaptive mechanism, raising mutation rates only when it is most advantageous. Here, we use a mathematical model to investigate the plausibility of the adaptive hypothesis. We show that such a mechanism can be mantained if the population is subjected to diverse stresses. By simulating various antibiotic treatment schemes, we find that combination treatments can reduce the effectiveness of second-order selection on stress-induced mutagenesis. We discuss the implications of our results to strategies of antibiotic therapy.
AU - Lukacisinova, Marta
AU - Novak, Sebastian
AU - Paixao, Tiago
ID - 696
IS - 7
JF - PLoS Computational Biology
SN - 1553734X
TI - Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes
VL - 13
ER -
TY - JOUR
AB - The rising prevalence of antibiotic resistant bacteria is an increasingly serious public health challenge. To address this problem, recent work ranging from clinical studies to theoretical modeling has provided valuable insights into the mechanisms of resistance, its emergence and spread, and ways to counteract it. A deeper understanding of the underlying dynamics of resistance evolution will require a combination of experimental and theoretical expertise from different disciplines and new technology for studying evolution in the laboratory. Here, we review recent advances in the quantitative understanding of the mechanisms and evolution of antibiotic resistance. We focus on key theoretical concepts and new technology that enables well-controlled experiments. We further highlight key challenges that can be met in the near future to ultimately develop effective strategies for combating resistance.
AU - Lukacisinova, Marta
AU - Bollenbach, Mark Tobias
ID - 1027
JF - Current Opinion in Biotechnology
TI - Toward a quantitative understanding of antibiotic resistance evolution
VL - 46
ER -
TY - JOUR
AB - The history of auxin and cytokinin biology including the initial discoveries by father–son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
AU - Hurny, Andrej
AU - Benková, Eva
ID - 1024
JF - Auxins and Cytokinins in Plant Biology
SN - 10643745
TI - Methodological advances in auxin and cytokinin biology
VL - 1569
ER -
TY - JOUR
AB - The segregation of different cell types into distinct tissues is a fundamental process in metazoan development. Differences in cell adhesion and cortex tension are commonly thought to drive cell sorting by regulating tissue surface tension (TST). However, the role that differential TST plays in cell segregation within the developing embryo is as yet unclear. Here, we have analyzed the role of differential TST for germ layer progenitor cell segregation during zebrafish gastrulation. Contrary to previous observations that differential TST drives germ layer progenitor cell segregation in vitro, we show that germ layers display indistinguishable TST within the gastrulating embryo, arguing against differential TST driving germ layer progenitor cell segregation in vivo. We further show that the osmolarity of the interstitial fluid (IF) is an important factor that influences germ layer TST in vivo, and that lower osmolarity of the IF compared with standard cell culture medium can explain why germ layers display differential TST in culture but not in vivo. Finally, we show that directed migration of mesendoderm progenitors is required for germ layer progenitor cell segregation and germ layer formation.
AU - Krens, Gabriel
AU - Veldhuis, Jim
AU - Barone, Vanessa
AU - Capek, Daniel
AU - Maître, Jean-Léon
AU - Brodland, Wayne
AU - Heisenberg, Carl-Philipp J
ID - 676
IS - 10
JF - Development
SN - 09501991
TI - Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation
VL - 144
ER -
TY - JOUR
AB - How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data.
AU - Steinrück, Magdalena
AU - Guet, Calin C
ID - 704
JF - eLife
SN - 2050084X
TI - Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection
VL - 6
ER -
TY - JOUR
AB - During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.
AU - Smutny, Michael
AU - Ákos, Zsuzsa
AU - Grigolon, Silvia
AU - Shamipour, Shayan
AU - Ruprecht, Verena
AU - Capek, Daniel
AU - Behrndt, Martin
AU - Papusheva, Ekaterina
AU - Tada, Masazumi
AU - Hof, Björn
AU - Vicsek, Tamás
AU - Salbreux, Guillaume
AU - Heisenberg, Carl-Philipp J
ID - 661
JF - Nature Cell Biology
SN - 14657392
TI - Friction forces position the neural anlage
VL - 19
ER -
TY - CONF
AB - The notion of treewidth of graphs has been exploited for faster algorithms for several problems arising in verification and program analysis. Moreover, various notions of balanced tree decompositions have been used for improved algorithms supporting dynamic updates and analysis of concurrent programs. In this work, we present a tool for constructing tree-decompositions of CFGs obtained from Java methods, which is implemented as an extension to the widely used Soot framework. The experimental results show that our implementation on real-world Java benchmarks is very efficient. Our tool also provides the first implementation for balancing tree-decompositions. In summary, we present the first tool support for exploiting treewidth in the static analysis problems on Java programs.
AU - Chatterjee, Krishnendu
AU - Goharshady, Amir
AU - Pavlogiannis, Andreas
ED - D'Souza, Deepak
ID - 949
SN - 03029743
TI - JTDec: A tool for tree decompositions in soot
VL - 10482
ER -
TY - CONF
AB - We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of non-recursive programs. First, we apply ranking functions to recursion, resulting in measure functions, and show that they provide a sound and complete approach to prove worst-case bounds of non-deterministic recursive programs. Our second contribution is the synthesis of measure functions in non-polynomial forms. We show that non-polynomial measure functions with logarithm and exponentiation can be synthesized through abstraction of logarithmic or exponentiation terms, Farkas’ Lemma, and Handelman’s Theorem using linear programming. While previous methods obtain worst-case polynomial bounds, our approach can synthesize bounds of the form O(n log n) as well as O(nr) where r is not an integer. We present experimental results to demonstrate that our approach can efficiently obtain worst-case bounds of classical recursive algorithms such as Merge-Sort, Closest-Pair, Karatsuba’s algorithm and Strassen’s algorithm.
AU - Chatterjee, Krishnendu
AU - Fu, Hongfei
AU - Goharshady, Amir
ED - Majumdar, Rupak
ED - Kunčak, Viktor
ID - 639
SN - 978-331963389-3
TI - Non-polynomial worst case analysis of recursive programs
VL - 10427
ER -
TY - CONF
AB - With the accelerated development of robot technologies, optimal control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of the history of sensor values, guided by the goals, intentions, objectives, learning schemes, and so forth. The idea is that the controller controls the world---the body plus its environment---as reliably as possible. This paper focuses on new lines of self-organization for developmental robotics. We apply the recently developed differential extrinsic synaptic plasticity to a muscle-tendon driven arm-shoulder system from the Myorobotics toolkit. In the experiments, we observe a vast variety of self-organized behavior patterns: when left alone, the arm realizes pseudo-random sequences of different poses. By applying physical forces, the system can be entrained into definite motion patterns like wiping a table. Most interestingly, after attaching an object, the controller gets in a functional resonance with the object's internal dynamics, starting to shake spontaneously bottles half-filled with water or sensitively driving an attached pendulum into a circular mode. When attached to the crank of a wheel the neural system independently discovers how to rotate it. In this way, the robot discovers affordances of objects its body is interacting with.
AU - Martius, Georg S
AU - Hostettler, Rafael
AU - Knoll, Alois
AU - Der, Ralf
ID - 8094
SN - 9780262339360
T2 - Proceedings of the Artificial Life Conference 2016
TI - Self-organized control of an tendon driven arm by differential extrinsic plasticity
VL - 28
ER -
TY - JOUR
AB - Hybrid systems represent an important and powerful formalism for modeling real-world applications such as embedded systems. A verification tool like SpaceEx is based on the exploration of a symbolic search space (the region space). As a verification tool, it is typically optimized towards proving the absence of errors. In some settings, e.g., when the verification tool is employed in a feedback-directed design cycle, one would like to have the option to call a version that is optimized towards finding an error trajectory in the region space. A recent approach in this direction is based on guided search. Guided search relies on a cost function that indicates which states are promising to be explored, and preferably explores more promising states first. In this paper, we propose an abstraction-based cost function based on coarse-grained space abstractions for guiding the reachability analysis. For this purpose, a suitable abstraction technique that exploits the flexible granularity of modern reachability analysis algorithms is introduced. The new cost function is an effective extension of pattern database approaches that have been successfully applied in other areas. The approach has been implemented in the SpaceEx model checker. The evaluation shows its practical potential.
AU - Bogomolov, Sergiy
AU - Donzé, Alexandre
AU - Frehse, Goran
AU - Grosu, Radu
AU - Johnson, Taylor
AU - Ladan, Hamed
AU - Podelski, Andreas
AU - Wehrle, Martin
ID - 1705
IS - 4
JF - International Journal on Software Tools for Technology Transfer
TI - Guided search for hybrid systems based on coarse-grained space abstractions
VL - 18
ER -
TY - CONF
AB - Volunteer supporters play an important role in modern crisis and disaster management. In the times of mobile Internet devices, help from thousands of volunteers can be requested within a short time span, thus relieving professional helpers from minor chores or geographically spread-out tasks. However, the simultaneous availability of many volunteers also poses new problems. In particular, the volunteer efforts must be well coordinated, or otherwise situations might emerge in which too many idle volunteers at one location become more of a burden than a relief to the professionals.
In this work, we study the task of optimally assigning volunteers to selected locations, e.g. in order to perform regular measurements, to report on damage, or to distribute information or resources to the population in a crisis situation. We formulate the assignment tasks as an optimization problem and propose an effective and efficient solution procedure. Experiments on real data of the Team Österreich, consisting of over 36,000 Austrian volunteers, show the effectiveness and efficiency of our approach.
AU - Pielorz, Jasmin
AU - Lampert, Christoph
ID - 1707
TI - Optimal geospatial allocation of volunteers for crisis management
ER -
TY - JOUR
AB - We consider Conditional random fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) (Formula presented.) is the sum of terms over intervals [i, j] where each term is non-zero only if the substring (Formula presented.) equals a prespecified pattern w. Such CRFs can be naturally applied to many sequence tagging problems. We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively (Formula presented.), (Formula presented.) and (Formula presented.) where L is the combined length of input patterns, (Formula presented.) is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of Ye et al. (NIPS, 2009) whose complexities are respectively (Formula presented.), (Formula presented.) and (Formula presented.), where (Formula presented.) is the number of input patterns. In addition, we give an efficient algorithm for sampling, and revisit the case of MAP with non-positive weights.
AU - Kolmogorov, Vladimir
AU - Takhanov, Rustem
ID - 1794
IS - 1
JF - Algorithmica
TI - Inference algorithms for pattern-based CRFs on sequence data
VL - 76
ER -
TY - JOUR
AB - Relational models for contingency tables are generalizations of log-linear models, allowing effects associated with arbitrary subsets of cells in the table, and not necessarily containing the overall effect, that is, a common parameter in every cell. Similarly to log-linear models, relational models can be extended to non-negative distributions, but the extension requires more complex methods. An extended relational model is defined as an algebraic variety, and it turns out to be the closure of the original model with respect to the Bregman divergence. In the extended relational model, the MLE of the cell parameters always exists and is unique, but some of its properties may be different from those of the MLE under log-linear models. The MLE can be computed using a generalized iterative scaling procedure based on Bregman projections.
AU - Klimova, Anna
AU - Rudas, Tamás
ID - 1833
JF - Journal of Multivariate Analysis
TI - On the closure of relational models
VL - 143
ER -
TY - JOUR
AB - We consider random matrices of the form H=W+λV, λ∈ℝ+, where W is a real symmetric or complex Hermitian Wigner matrix of size N and V is a real bounded diagonal random matrix of size N with i.i.d.\ entries that are independent of W. We assume subexponential decay for the matrix entries of W and we choose λ∼1, so that the eigenvalues of W and λV are typically of the same order. Further, we assume that the density of the entries of V is supported on a single interval and is convex near the edges of its support. In this paper we prove that there is λ+∈ℝ+ such that the largest eigenvalues of H are in the limit of large N determined by the order statistics of V for λ>λ+. In particular, the largest eigenvalue of H has a Weibull distribution in the limit N→∞ if λ>λ+. Moreover, for N sufficiently large, we show that the eigenvectors associated to the largest eigenvalues are partially localized for λ>λ+, while they are completely delocalized for λ<λ+. Similar results hold for the lowest eigenvalues.
AU - Lee, Jioon
AU - Schnelli, Kevin
ID - 1881
IS - 1-2
JF - Probability Theory and Related Fields
TI - Extremal eigenvalues and eigenvectors of deformed Wigner matrices
VL - 164
ER -
TY - CONF
AB - Magic: the Gathering is a game about magical combat for any number of players. Formally it is a zero-sum, imperfect information stochastic game that consists of a potentially unbounded number of steps. We consider the problem of deciding if a move is legal in a given single step of Magic. We show that the problem is (a) coNP-complete in general; and (b) in P if either of two small sets of cards are not used. Our lower bound holds even for single-player Magic games. The significant aspects of our results are as follows: First, in most real-life game problems, the task of deciding whether a given move is legal in a single step is trivial, and the computationally hard task is to find the best sequence of legal moves in the presence of multiple players. In contrast, quite uniquely our hardness result holds for single step and with only one-player. Second, we establish efficient algorithms for important special cases of Magic.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
ID - 478
TI - The complexity of deciding legality of a single step of magic: The gathering
VL - 285
ER -
TY - CONF
AB - Clinical guidelines and decision support systems (DSS) play an important role in daily practices of medicine. Many text-based guidelines have been encoded for work-flow simulation of DSS to automate health care. During the collaboration with Carle hospital to develop a DSS, we identify that, for some complex and life-critical diseases, it is highly desirable to automatically rigorously verify some complex temporal properties in guidelines, which brings new challenges to current simulation based DSS with limited support of automatical formal verification and real-time data analysis. In this paper, we conduct the first study on applying runtime verification to cooperate with current DSS based on real-time data. Within the proposed technique, a user-friendly domain specific language, named DRTV, is designed to specify vital real-time data sampled by medical devices and temporal properties originated from clinical guidelines. Some interfaces are developed for data acquisition and communication. Then, for medical practice scenarios described in DRTV model, we will automatically generate event sequences and runtime property verifier automata. If a temporal property violates, real-time warnings will be produced by the formal verifier and passed to medical DSS. We have used DRTV to specify different kinds of medical care scenarios, and applied the proposed technique to assist existing DSS. As presented in experiment results, in terms of warning detection, it outperforms the only use of DSS or human inspection, and improves the quality of clinical health care of hospital
AU - Jiang, Yu
AU - Liu, Han
AU - Kong, Hui
AU - Wang, Rui
AU - Hosseini, Mohamad
AU - Sun, Jiaguang
AU - Sha, Lui
ID - 479
T2 - Proceedings of the 38th International Conference on Software Engineering Companion
TI - Use runtime verification to improve the quality of medical care practice
ER -
TY - CONF
AB - Graph games provide the foundation for modeling and synthesizing reactive processes. In the synthesis of stochastic reactive processes, the traditional model is perfect-information stochastic games, where some transitions of the game graph are controlled by two adversarial players, and the other transitions are executed probabilistically. We consider such games where the objective is the conjunction of several quantitative objectives (specified as mean-payoff conditions), which we refer to as generalized mean-payoff objectives. The basic decision problem asks for the existence of a finite-memory strategy for a player that ensures the generalized mean-payoff objective be satisfied with a desired probability against all strategies of the opponent. A special case of the decision problem is the almost-sure problem where the desired probability is 1. Previous results presented a semi-decision procedure for -approximations of the almost-sure problem. In this work, we show that both the almost-sure problem as well as the general basic decision problem are coNP-complete, significantly improving the previous results. Moreover, we show that in the case of 1-player stochastic games, randomized memoryless strategies are sufficient and the problem can be solved in polynomial time. In contrast, in two-player stochastic games, we show that even with randomized strategies exponential memory is required in general, and present a matching exponential upper bound. We also study the basic decision problem with infinite-memory strategies and present computational complexity results for the problem. Our results are relevant in the synthesis of stochastic reactive systems with multiple quantitative requirements.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
ID - 480
TI - Perfect-information stochastic games with generalized mean-payoff objectives
VL - 05-08-July-2016
ER -
TY - CONF
AB - Nonlinear electro-optical conversion of microwave radiation into the optical telecommunication band is achieved within a crystalline whispering gallery mode resonator, reaching 0.1% photon number conversion efficiency with MHz bandwidth.
AU - Rueda, Alfredo
AU - Sedlmeir, Florian
AU - Collodo, Michele
AU - Vogl, Ulrich
AU - Stiller, Birgit
AU - Schunk, Gerhard
AU - Strekalov, Dmitry
AU - Marquardt, Christoph
AU - Fink, Johannes M
AU - Painter, Oskar
AU - Leuchs, Gerd
AU - Schwefel, Harald
ID - 482
TI - Nonlinear single sideband microwave to optical conversion using an electro-optic WGM-resonator
ER -
TY - JOUR
AB - The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa . The potential roles of PtCLE genes were studied by comparative analysis and transcriptional pro fi ling. Among fi fty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These fi ndings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants.
AU - Liu, Zhijun
AU - Yang, Nan
AU - Lv, Yanting
AU - Pan, Lixia
AU - Lv, Shuo
AU - Han, Huibin
AU - Wang, Guodong
ID - 510
IS - 6
JF - Plant Signaling & Behavior
TI - The CLE gene family in Populus trichocarpa
VL - 11
ER -
TY - GEN
AB - We consider the quantitative analysis problem for interprocedural control-flow graphs (ICFGs). The input consists of an ICFG, a positive weight function that assigns every transition a positive integer-valued number, and a labelling of the transitions (events) as good, bad, and neutral events. The weight function assigns to each transition a numerical value that represents ameasure of how good or bad an event is. The quantitative analysis problem asks whether there is a run of the ICFG where the ratio of the sum of the numerical weights of good events versus the sum of weights of bad events in the long-run is at least a given threshold (or equivalently, to compute the maximal ratio among all valid paths in the ICFG). The quantitative analysis problem for ICFGs can be solved in polynomial time, and we present an efficient and practical algorithm for the problem. We show that several problems relevant for static program analysis, such as estimating the worst-case execution time of a program or the average energy consumption of a mobile application, can be modeled in our framework. We have implemented our algorithm as a tool in the Java Soot framework. We demonstrate the effectiveness of our approach with two case studies. First, we show that our framework provides a sound approach (no false positives) for the analysis of inefficiently-used containers. Second, we show that our approach can also be used for static profiling of programs which reasons about methods that are frequently invoked. Our experimental results show that our tool scales to relatively large benchmarks, and discovers relevant and useful information that can be used to optimize performance of the programs.
AU - Chatterjee, Krishnendu
AU - Pavlogiannis, Andreas
AU - Velner, Yaron
ID - 5445
SN - 2664-1690
TI - Quantitative interprocedural analysis
ER -
TY - GEN
AB - We study the problem of developing efficient approaches for proving termination of recursive programs with one-dimensional arrays. Ranking functions serve as a sound and complete approach for proving termination of non-recursive programs without array operations. First, we generalize ranking functions to the notion of measure functions, and prove that measure functions (i) provide a sound method to prove termination of recursive programs (with one-dimensional arrays), and (ii) is both sound and complete over recursive programs without array operations. Our second contribution is the synthesis of measure functions of specific forms in polynomial time. More precisely, we prove that (i) polynomial measure functions over recursive programs can be synthesized in polynomial time through Farkas’ Lemma and Handelman’s Theorem, and (ii) measure functions involving logarithm and exponentiation can be synthesized in polynomial time through abstraction of logarithmic or exponential terms and Handelman’s Theorem. A key application of our method is the worst-case analysis of recursive programs. While previous methods obtain worst-case polynomial bounds of the form O(n^k), where k is an integer, our polynomial time methods can synthesize bounds of the form O(n log n), as well as O(n^x), where x is not an integer. We show the applicability of our automated technique to obtain worst-case complexity of classical recursive algorithms such as (i) Merge-Sort, the divideand-
conquer algorithm for the Closest-Pair problem, where we obtain O(n log n) worst-case bound, and (ii) Karatsuba’s algorithm for polynomial multiplication and Strassen’s algorithm for matrix multiplication, where we obtain O(n^x) bound, where x is not an integer and close to the best-known bounds for the respective algorithms. Finally, we present experimental results to demonstrate the
effectiveness of our approach.
AU - Anonymous, 1
AU - Anonymous, 2
AU - Anonymous, 3
ID - 5446
SN - 2664-1690
TI - Termination and worst-case analysis of recursive programs
ER -
TY - GEN
AB - We consider the problem of developing automated techniques to aid the average-case complexity analysis of programs. Several classical textbook algorithms have quite efficient average-case complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., QUICK-SORT), or completely ineffective (e.g., COUPONCOLLECTOR). Since the main focus of average-case analysis is to obtain efficient bounds, we consider bounds that are either logarithmic,
linear, or almost-linear (O(log n), O(n), O(n · log n),
respectively, where n represents the size of the input). Our main contribution is a sound approach for deriving such average-case bounds for randomized recursive programs. Our approach is efficient (a simple linear-time algorithm), and it is based on (a) the analysis of recurrence relations induced by randomized algorithms, and (b) a guess-and-check technique. Our approach can infer the asymptotically optimal average-case bounds for classical randomized algorithms, including RANDOMIZED-SEARCH, QUICKSORT, QUICK-SELECT, COUPON-COLLECTOR, where the worstcase
bounds are either inefficient (such as linear as compared to logarithmic of average-case, or quadratic as compared to linear or almost-linear of average-case), or ineffective. We have implemented our approach, and the experimental results show that we obtain the bounds efficiently for various classical algorithms.
AU - Anonymous, 1
AU - Anonymous, 2
AU - Anonymous, 3
ID - 5447
SN - 2664-1690
TI - Average-case analysis of programs: Automated recurrence analysis for almost-linear bounds
ER -
TY - GEN
AB - We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class.
We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence.
1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence.
2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence.
Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes.
AU - Anonymous, 1
AU - Anonymous, 2
AU - Anonymous, 3
AU - Anonymous, 4
ID - 5448
SN - 2664-1690
TI - Data-centric dynamic partial order reduction
ER -
TY - GEN
AB - The fixation probability is the probability that a new mutant introduced in a homogeneous population eventually takes over the entire population.
The fixation probability is a fundamental quantity of natural selection, and known to depend on the population structure.
Amplifiers of natural selection are population structures which increase the fixation probability of advantageous mutants, as compared to the baseline case of well-mixed populations. In this work we focus on symmetric population structures represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known has been the Star graph, and the existence of undirected graphs with stronger amplification properties has remained open for over a decade.
In this work we present the Comet and Comet-swarm families of undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Comet-swarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for fixed population size and at the limit of large populations, respectively.
AU - Pavlogiannis, Andreas
AU - Tkadlec, Josef
AU - Chatterjee, Krishnendu
AU - Nowak, Martin
ID - 5449
SN - 2664-1690
TI - Amplification on undirected population structures: Comets beat stars
ER -
TY - GEN
AU - Pavlogiannis, Andreas
AU - Tkadlec, Josef
AU - Chatterjee, Krishnendu
AU - Nowak, Martin
ID - 5451
SN - 2664-1690
TI - Strong amplifiers of natural selection
ER -
TY - GEN
AU - Pavlogiannis, Andreas
AU - Tkadlec, Josef
AU - Chatterjee, Krishnendu
AU - Nowak, Martin
ID - 5452
SN - 2664-1690
TI - Arbitrarily strong amplifiers of natural selection
ER -
TY - GEN
AU - Pavlogiannis, Andreas
AU - Tkadlec, Josef
AU - Chatterjee, Krishnendu
AU - Nowak, Martin
ID - 5453
SN - 2664-1690
TI - Arbitrarily strong amplifiers of natural selection
ER -
TY - DATA
AB - We collected flower colour information on species in the tribe Antirrhineae from taxonomic literature. We also retreived molecular data from GenBank for as many of these species as possible to estimate phylogenetic relationships among these taxa. We then used the R package 'diversitree' to examine patterns of evolutionary transitions between anthocyanin and yellow pigmentation across the phylogeny.
For full details of the methods see:
Ellis TJ and Field DL "Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae”, Annals of Botany (in press)
AU - Ellis, Thomas
AU - Field, David
ID - 5550
TI - Flower colour data and phylogeny (NEXUS) files
ER -
TY - DATA
AB - Data from array experiments investigating pollinator behaviour on snapdragons in controlled conditions, and their effect on plant mating. Data were collected as part of Tom Ellis' PhD thesis , submitted February 2016.
We placed a total of 36 plants in a grid inside a closed organza tent, with a single hive of commercially bred bumblebees (Bombus hortorum). We used only the yellow-flowered Antirrhinum majus striatum and the magenta-flowered Antirrhinum majus pseudomajus, at ratios of 6:36, 12:24, 18:18, 24:12 and 30:6.
After 24 hours to learn how to deal with snapdragons, I observed pollinators foraging on plants, and recorded the transitions between plants. Thereafter seeds on plants were allowed to develops. A sample of these were grown to maturity when their flower colour could be determined, and they were scored as yellow, magenta, or hybrid.
AU - Ellis, Thomas
ID - 5551
TI - Data on pollinator observations and offpsring phenotypes
ER -
TY - DATA
AB - Data on pollinator visitation to wild snapdragons in a natural hybrid zone, collected as part of Tom Ellis' PhD thesis (submitted February 2016).
Snapdragon flowers have a mouth-like structure which pollinators must open to access nectar. We placed 5mm cellophane tags in these mouths, which are held in place by the pressure of the flower until a pollinator visits. When she opens the flower, the tag drops out, and one can infer a visit. We surveyed plants over multiple days in 2010, 2011 and 2012.
Also included are data on phenotypic and demographic variables which may be explanatory variables for pollinator visitation.
AU - Ellis, Thomas
ID - 5552
TI - Pollinator visitation data for wild Antirrhinum majus plants, with phenotypic and frequency data.
ER -
TY - DATA
AB - Genotypic, phenotypic and demographic data for 2128 wild snapdragons and 1127 open-pollinated progeny from a natural hybrid zone, collected as part of Tom Ellis' PhD thesis (submitted) February 2016).
Tissue samples were sent to LGC Genomics in Berlin for DNA extraction, and genotyping at 70 SNP markers by KASPR genotyping. 29 of these SNPs failed to amplify reliably, and have been removed from this dataset.
Other data were retreived from an online database of this population at www.antspec.org.
AU - Field, David
AU - Ellis, Thomas
ID - 5553
KW - paternity assignment
KW - pedigree
KW - matting patterns
KW - assortative mating
KW - Antirrhinum majus
KW - frequency-dependent selection
KW - plant-pollinator interaction
TI - Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012
ER -
TY - DATA
AB - This FIJI script calculates the population average of the migration speed as a function of time of all cells from wide field microscopy movies.
AU - Hauschild, Robert
ID - 5555
KW - cell migration
KW - wide field microscopy
KW - FIJI
TI - Fiji script to determine average speed and direction of migration of cells
ER -
TY - DATA
AB - MATLAB code and processed datasets available for reproducing the results in:
Lukačišin, M.*, Landon, M.*, Jajoo, R*. (2016) Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.
*equal contributions
AU - Lukacisin, Martin
AU - Landon, Matthieu
AU - Jajoo, Rishi
ID - 5556
KW - transcription
KW - pausing
KW - backtracking
KW - polymerase
KW - RNA
KW - NET-seq
KW - nucleosome
KW - basepairing
TI - MATLAB analysis code for 'Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast'
ER -
TY - DATA
AB - Small synthetic discrete tomography problems.
Sizes are 32x32, 64z64 and 256x256.
Projection angles are 2, 4, and 6.
Number of labels are 3 and 5.
AU - Swoboda, Paul
ID - 5557
KW - discrete tomography
TI - Synthetic discrete tomography problems
ER -
TY - DATA
AB - PhD thesis LaTeX source code
AU - Bojsen-Hansen, Morten
ID - 5558
TI - Tracking, Correcting and Absorbing Water Surface Waves
ER -
TY - JOUR
AB - A crucial step in the early development of multicellular organisms involves the establishment of spatial patterns of gene expression which later direct proliferating cells to take on different cell fates. These patterns enable the cells to infer their global position within a tissue or an organism by reading out local gene expression levels. The patterning system is thus said to encode positional information, a concept that was formalized recently in the framework of information theory. Here we introduce a toy model of patterning in one spatial dimension, which can be seen as an extension of Wolpert's paradigmatic "French Flag" model, to patterning by several interacting, spatially coupled genes subject to intrinsic and extrinsic noise. Our model, a variant of an Ising spin system, allows us to systematically explore expression patterns that optimally encode positional information. We find that optimal patterning systems use positional cues, as in the French Flag model, together with gene-gene interactions to generate combinatorial codes for position which we call "Counter" patterns. Counter patterns can also be stabilized against noise and variations in system size or morphogen dosage by longer-range spatial interactions of the type invoked in the Turing model. The simple setup proposed here qualitatively captures many of the experimentally observed properties of biological patterning systems and allows them to be studied in a single, theoretically consistent framework.
AU - Hillenbrand, Patrick
AU - Gerland, Ulrich
AU - Tkacik, Gasper
ID - 1270
IS - 9
JF - PLoS One
TI - Beyond the French flag model: Exploiting spatial and gene regulatory interactions for positional information
VL - 11
ER -
TY - JOUR
AB - Background: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Results: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Conclusions: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
AU - Diz Muñoz, Alba
AU - Romanczuk, Pawel
AU - Yu, Weimiao
AU - Bergert, Martin
AU - Ivanovitch, Kenzo
AU - Salbreux, Guillame
AU - Heisenberg, Carl-Philipp J
AU - Paluch, Ewa
ID - 1271
IS - 1
JF - BMC Biology
TI - Steering cell migration by alternating blebs and actin-rich protrusions
VL - 14
ER -
TY - JOUR
AB - We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams.
AU - Held, Martin
AU - Huber, Stefan
AU - Palfrader, Peter
ID - 1272
IS - 5
JF - Computer-Aided Design and Applications
TI - Generalized offsetting of planar structures using skeletons
VL - 13
ER -
TY - JOUR
AB - Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.
AU - Porco, Silvana
AU - Larrieu, Antoine
AU - Du, Yujuan
AU - Gaudinier, Allison
AU - Goh, Tatsuaki
AU - Swarup, Kamal
AU - Swarup, Ranjan
AU - Kuempers, Britta
AU - Bishopp, Anthony
AU - Lavenus, Julien
AU - Casimiro, Ilda
AU - Hill, Kristine
AU - Benková, Eva
AU - Fukaki, Hidehiro
AU - Brady, Siobhan
AU - Scheres, Ben
AU - Peéet, Benjamin
AU - Bennett, Malcolm
ID - 1273
IS - 18
JF - Development
TI - Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3
VL - 143
ER -
TY - JOUR
AB - Synchronized tissue polarization during regeneration or de novo vascular tissue formation is a plant-specific example of intercellular communication and coordinated development. According to the canalization hypothesis, the plant hormone auxin serves as polarizing signal that mediates directional channel formation underlying the spatio-temporal vasculature patterning. A necessary part of canalization is a positive feedback between auxin signaling and polarity of the intercellular auxin flow. The cellular and molecular mechanisms of this process are still poorly understood, not the least, because of a lack of a suitable model system. We show that the main genetic model plant, Arabidopsis (Arabidopsis thaliana) can be used to study the canalization during vascular cambium regeneration and new vasculature formation. We monitored localized auxin responses, directional auxin-transport channels formation, and establishment of new vascular cambium polarity during regenerative processes after stem wounding. The increased auxin response above and around the wound preceded the formation of PIN1 auxin transporter-marked channels from the primarily homogenous tissue and the transient, gradual changes in PIN1 localization preceded the polarity of newly formed vascular tissue. Thus, Arabidopsis is a useful model for studies of coordinated tissue polarization and vasculature formation after wounding allowing for genetic and mechanistic dissection of the canalization hypothesis.
AU - Mazur, Ewa
AU - Benková, Eva
AU - Friml, Jirí
ID - 1274
JF - Scientific Reports
TI - Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis
VL - 6
ER -
TY - JOUR
AU - Callan Jones, Andrew
AU - Ruprecht, Verena
AU - Wieser, Stefan
AU - Heisenberg, Carl-Philipp J
AU - Voituriez, Raphaël
ID - 1275
IS - 13
JF - Physical Review Letters
TI - Callan-Jones et al. Reply
VL - 117
ER -
TY - JOUR
AB - The cytochrome (cyt) bc 1 complex is an integral component of the respiratory electron transfer chain sustaining the energy needs of organisms ranging from humans to bacteria. Due to its ubiquitous role in the energy metabolism, both the oxidation and reduction of the enzyme's substrate co-enzyme Q has been studied vigorously. Here, this vast amount of data is reassessed after probing the substrate reduction steps at the Q i-site of the cyt bc 1 complex of Rhodobacter capsulatus using atomistic molecular dynamics simulations. The simulations suggest that the Lys251 side chain could rotate into the Q i-site to facilitate binding of half-protonated semiquinone-a reaction intermediate that is potentially formed during substrate reduction. At this bent pose, the Lys251 forms a salt bridge with the Asp252, thus making direct proton transfer possible. In the neutral state, the lysine side chain stays close to the conserved binding location of cardiolipin (CL). This back-and-forth motion between the CL and Asp252 indicates that Lys251 functions as a proton shuttle controlled by pH-dependent negative feedback. The CL/K/D switching, which represents a refinement to the previously described CL/K pathway, fine-tunes the proton transfer process. Lastly, the simulation data was used to formulate a mechanism for reducing the substrate at the Q i-site.
AU - Postila, Pekka
AU - Kaszuba, Karol
AU - Kuleta, Patryk
AU - Vattulainen, Ilpo
AU - Sarewicz, Marcin
AU - Osyczka, Artur
AU - Róg, Tomasz
ID - 1276
JF - Scientific Reports
TI - Atomistic determinants of co-enzyme Q reduction at the Qi-site of the cytochrome bc1 complex
VL - 6
ER -
TY - JOUR
AB - The Arabidopsis thaliana endogenous elicitor peptides (AtPeps) are released into the apoplast after cellular damage caused by pathogens or wounding to induce innate immunity by direct binding to the membrane-localized leucine-rich repeat receptor kinases, PEP RECEPTOR1 (PEPR1) and PEPR2. Although the PEPR-mediated signaling components and responses have been studied extensively, the contributions of the subcellular localization and dynamics of the active PEPRs remain largely unknown. We used live-cell imaging of the fluorescently labeled and bioactive pep1 to visualize the intracellular behavior of the PEPRs in the Arabidopsis root meristem. We found that AtPep1 decorated the plasma membrane (PM) in a receptor-dependent manner and cointernalized with PEPRs. Trafficking of the AtPep1-PEPR1 complexes to the vacuole required neither the trans-Golgi network/early endosome (TGN/EE)-localized vacuolar H+ -ATPase activity nor the function of the brefeldin A-sensitive ADP-ribosylation factor-guanine exchange factors (ARF-GEFs). In addition, AtPep1 and different TGN/EE markers colocalized only rarely, implying that the intracellular route of this receptor-ligand pair is largely independent of the TGN/EE. Inducible overexpression of the Arabidopsis clathrin coat disassembly factor, Auxilin2, which inhibits clathrin-mediated endocytosis (CME), impaired the AtPep1-PEPR1 internalization and compromised AtPep1-mediated responses. Our results show that clathrin function at the PM is required to induce plant defense responses, likely through CME of cell surface-located signaling components.
AU - Ortiz Morea, Fausto
AU - Savatin, Daniel
AU - Dejonghe, Wim
AU - Kumar, Rahul
AU - Luo, Yu
AU - Adamowski, Maciek
AU - Van Begin, Jos
AU - Dressano, Keini
AU - De Oliveira, Guilherme
AU - Zhao, Xiuyang
AU - Lu, Qing
AU - Madder, Annemieke
AU - Friml, Jirí
AU - De Moura, Daniel
AU - Russinova, Eugenia
ID - 1277
IS - 39
JF - PNAS
TI - Danger-associated peptide signaling in Arabidopsis requires clathrin
VL - 113
ER -
TY - JOUR
AB - Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL) Purkinje cells (P-cells) and the medial vestibular nucleus (MVN) neurons targeted by FL (FL-targeted MVN neurons) may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM) and electron microscopy (EM), we injected green florescence protein (GFP)-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH). In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (< 1 μm) distal dendrites of MVN neurons, forming symmetrical synapses. The majority of such parvocellular MVN/PrH neurons were determined to be glutamatergic by immunocytochemistry and in-situ hybridization of GFP expressing transgenic mice. To further examine the spatial relationship between the synapses of FL P-cells and those of vestibular nerve on the neurons of the parvocellular MVN/ PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence the function of neighboring excitatory synapses of vestibular nerve in the parvocellular MVN/PrH neurons.
AU - Matsuno, Hitomi
AU - Kudoh, Moeko
AU - Watakabe, Akiya
AU - Yamamori, Tetsuo
AU - Shigemoto, Ryuichi
AU - Nagao, Soichi
ID - 1278
IS - 10
JF - PLoS One
TI - Distribution and structure of synapses on medial vestibular nuclear neurons targeted by cerebellar flocculus purkinje cells and vestibular nerve in mice: Light and electron microscopy studies
VL - 11
ER -
TY - JOUR
AB - During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory inputdriven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity- related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.
AU - Kovács, Krisztián
AU - O'Neill, Joseph
AU - Schönenberger, Philipp
AU - Penttonen, Markku
AU - Rangel Guerrero, Dámaris K
AU - Csicsvari, Jozsef L
ID - 1279
IS - 10
JF - PLoS One
TI - Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus
VL - 11
ER -
TY - JOUR
AB - We prove the Wigner-Dyson-Mehta conjecture at fixed energy in the bulk of the spectrum for generalized symmetric and Hermitian Wigner matrices. Previous results concerning the universality of random matrices either require an averaging in the energy parameter or they hold only for Hermitian matrices if the energy parameter is fixed. We develop a homogenization theory of the Dyson Brownian motion and show that microscopic universality follows from mesoscopic statistics.
AU - Bourgade, Paul
AU - Erdös, László
AU - Yau, Horngtzer
AU - Yin, Jun
ID - 1280
IS - 10
JF - Communications on Pure and Applied Mathematics
TI - Fixed energy universality for generalized wigner matrices
VL - 69
ER -
TY - JOUR
AB - Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3 -) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3 - through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3 -. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3 - stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3 - mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.
AU - Bouguyon, Eléonore
AU - Perrine Walker, Francine
AU - Pervent, Marjorie
AU - Rochette, Juliette
AU - Cuesta, Candela
AU - Benková, Eva
AU - Martinière, Alexandre
AU - Bach, Lien
AU - Krouk, Gabriel
AU - Gojon, Alain
AU - Nacry, Philippe
ID - 1281
IS - 2
JF - Plant Physiology
TI - Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter sensor
VL - 172
ER -
TY - JOUR
AB - We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial–Meshulam model Xk(n, p) of random k-dimensional simplicial complexes on n vertices. We show that for p = Ω(logn/n), the eigenvalues of each of the matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of Garland, are arguments that relate the eigenvalues of these matrices to those of graphs that arise as links of (k - 2)-dimensional faces. Garland’s result concerns the Laplacian; we develop an analogous result for the adjacency matrix. The same arguments apply to other models of random complexes which allow for dependencies between the choices of k-dimensional simplices. In the second part of the paper, we apply this to the question of possible higher-dimensional analogues of the discrete Cheeger inequality, which in the classical case of graphs relates the eigenvalues of a graph and its edge expansion. It is very natural to ask whether this generalizes to higher dimensions and, in particular, whether the eigenvalues of the higher-dimensional Laplacian capture the notion of coboundary expansion—a higher-dimensional generalization of edge expansion that arose in recent work of Linial and Meshulam and of Gromov; this question was raised, for instance, by Dotterrer and Kahle. We show that this most straightforward version of a higher-dimensional discrete Cheeger inequality fails, in quite a strong way: For every k ≥ 2 and n ∈ N, there is a k-dimensional complex Yn k on n vertices that has strong spectral expansion properties (all nontrivial eigenvalues of the normalised k-dimensional Laplacian lie in the interval [1−O(1/√1), 1+0(1/√1]) but whose coboundary expansion is bounded from above by O(log n/n) and so tends to zero as n → ∞; moreover, Yn k can be taken to have vanishing integer homology in dimension less than k.
AU - Gundert, Anna
AU - Wagner, Uli
ID - 1282
IS - 2
JF - Israel Journal of Mathematics
TI - On eigenvalues of random complexes
VL - 216
ER -
TY - JOUR
AB - The impact of the plant hormone ethylene on seedling development has long been recognized; however, its ecophysiological relevance is unexplored. Three recent studies demonstrate that ethylene is a critical endogenous integrator of various environmental signals including mechanical stress, light, and oxygen availability during seedling germination and growth through the soil.
AU - Zhu, Qiang
AU - Benková, Eva
ID - 1283
IS - 10
JF - Trends in Plant Science
TI - Seedlings’ strategy to overcome a soil barrier
VL - 21
ER -
TY - JOUR
AB - Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.
AU - Paluch, Ewa
AU - Aspalter, Irene
AU - Sixt, Michael K
ID - 1285
JF - Annual Review of Cell and Developmental Biology
TI - Focal adhesion-independent cell migration
VL - 32
ER -
TY - JOUR
AB - We use recently developed angulon theory [R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001] to study the rotational spectrum of a cyanide molecular anion immersed into Bose-Einstein condensates of rubidium and strontium. Based on ab initio potential energy surfaces, we provide a detailed study of the rotational Lamb shift and many-body-induced fine structure which arise due to dressing of molecular rotation by a field of phonon excitations. We demonstrate that the magnitude of these effects is large enough in order to be observed in modern experiments on cold molecular ions. Furthermore, we introduce a novel method to construct pseudopotentials starting from the ab initio potential energy surfaces, which provides a means to obtain effective coupling constants for low-energy polaron models.
AU - Midya, Bikashkali
AU - Tomza, Michał
AU - Schmidt, Richard
AU - Lemeshko, Mikhail
ID - 1286
IS - 4
JF - Physical Review A - Atomic, Molecular, and Optical Physics
TI - Rotation of cold molecular ions inside a Bose-Einstein condensate
VL - 94
ER -
TY - JOUR
AB - A planar waveguide with an impedance boundary, composed of nonperfect metallic plates, and with passive or active dielectric filling, is considered. We show the possibility of selective mode guiding and amplification when a homogeneous pump is added to the dielectric and analyze differences in TE and TM mode propagation. Such a non-conservative system is also shown to feature exceptional points for specific and experimentally tunable parameters, which are described for a particular case of transparent dielectric.
AU - Midya, Bikashkali
AU - Konotop, Vladimir
ID - 1287
IS - 20
JF - Optics Letters
TI - Modes and exceptional points in waveguides with impedance boundary conditions
VL - 41
ER -
TY - JOUR
AB - Respiratory complex I transfers electrons from NADH to quinone, utilizing the reaction energy to translocate protons across the membrane. It is a key enzyme of the respiratory chain of many prokaryotic and most eukaryotic organisms. The reversible NADH oxidation reaction is facilitated in complex I by non-covalently bound flavin mononucleotide (FMN). Here we report that the catalytic activity of E. coli complex I with artificial electron acceptors potassium ferricyanide (FeCy) and hexaamineruthenium (HAR) is significantly inhibited in the enzyme pre-reduced by NADH. Further, we demonstrate that the inhibition is caused by reversible dissociation of FMN. The binding constant (Kd) for FMN increases from the femto- or picomolar range in oxidized complex I to the nanomolar range in the NADH reduced enzyme, with an FMN dissociation time constant of ~ 5 s. The oxidation state of complex I, rather than that of FMN, proved critical to the dissociation. Such dissociation is not observed with the T. thermophilus enzyme and our analysis suggests that the difference may be due to the unusually high redox potential of Fe-S cluster N1a in E. coli. It is possible that the enzyme attenuates ROS production in vivo by releasing FMN under highly reducing conditions.
AU - Holt, Peter
AU - Efremov, Rouslan
AU - Nakamaru Ogiso, Eiko
AU - Sazanov, Leonid A
ID - 1288
IS - 11
JF - Biochimica et Biophysica Acta - Bioenergetics
TI - Reversible FMN dissociation from Escherichia coli respiratory complex I
VL - 1857
ER -
TY - JOUR
AB - Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.
AU - Dunaeva, Olga
AU - Edelsbrunner, Herbert
AU - Lukyanov, Anton
AU - Machin, Michael
AU - Malkova, Daria
AU - Kuvaev, Roman
AU - Kashin, Sergey
ID - 1289
IS - 1
JF - Pattern Recognition Letters
TI - The classification of endoscopy images with persistent homology
VL - 83
ER -
TY - JOUR
AB - We developed a competition-based screening strategy to identify compounds that invert the selective advantage of antibiotic resistance. Using our assay, we screened over 19,000 compounds for the ability to select against the TetA tetracycline-resistance efflux pump in Escherichia coli and identified two hits, β-thujaplicin and disulfiram. Treating a tetracycline-resistant population with β-thujaplicin selects for loss of the resistance gene, enabling an effective second-phase treatment with doxycycline.
AU - Stone, Laura
AU - Baym, Michael
AU - Lieberman, Tami
AU - Chait, Remy P
AU - Clardy, Jon
AU - Kishony, Roy
ID - 1290
IS - 11
JF - Nature Chemical Biology
TI - Compounds that select against the tetracycline-resistance efflux pump
VL - 12
ER -
TY - JOUR
AB - We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than dÂ +Â 1, with d the space dimension, this happens for all values of J smaller than a critical value Jc(p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for pÂ >Â 2d and J in a left neighborhood of Jc(p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (dÂ =Â 2) or slabs (dÂ =Â 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.
AU - Giuliani, Alessandro
AU - Seiringer, Robert
ID - 1291
IS - 3
JF - Communications in Mathematical Physics
TI - Periodic striped ground states in Ising models with competing interactions
VL - 347
ER -
TY - JOUR
AB - We give explicit formulas and algorithms for the computation of the Thurston–Bennequin invariant of a nullhomologous Legendrian knot on a page of a contact open book and on Heegaard surfaces in convex position. Furthermore, we extend the results to rationally nullhomologous knots in arbitrary 3-manifolds.
AU - Durst, Sebastian
AU - Kegel, Marc
AU - Klukas, Mirko D
ID - 1292
IS - 2
JF - Acta Mathematica Hungarica
TI - Computing the Thurston–Bennequin invariant in open books
VL - 150
ER -
TY - JOUR
AB - For a graph G with p vertices the closed convex cone S⪰0(G) consists of all real positive semidefinite p×p matrices whose sparsity pattern is given by G, that is, those matrices with zeros in the off-diagonal entries corresponding to nonedges of G. The extremal rays of this cone and their associated ranks have applications to matrix completion problems, maximum likelihood estimation in Gaussian graphical models in statistics, and Gauss elimination for sparse matrices. While the maximum rank of an extremal ray in S⪰0(G), known as the sparsity order of G, has been characterized for different classes of graphs, we here study all possible extremal ranks of S⪰0(G). We investigate when the geometry of the (±1)-cut polytope of G yields a polyhedral characterization of the set of extremal ranks of S⪰0(G). For a graph G without K5 minors, we show that appropriately chosen normal vectors to the facets of the (±1)-cut polytope of G specify the off-diagonal entries of extremal matrices in S⪰0(G). We also prove that for appropriately chosen scalars the constant term of the linear equation of each facet-supporting hyperplane is the rank of its corresponding extremal matrix in S⪰0(G). Furthermore, we show that if G is series-parallel then this gives a complete characterization of all possible extremal ranks of S⪰0(G). Consequently, the sparsity order problem for series-parallel graphs can be solved in terms of polyhedral geometry.
AU - Solus, Liam T
AU - Uhler, Caroline
AU - Yoshida, Ruriko
ID - 1293
JF - Linear Algebra and Its Applications
TI - Extremal positive semidefinite matrices whose sparsity pattern is given by graphs without K5 minors
VL - 509
ER -
TY - JOUR
AB - Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voronoi diagrams of average balls.
AU - Edelsbrunner, Herbert
AU - Iglesias Ham, Mabel
ID - 1295
JF - Electronic Notes in Discrete Mathematics
TI - Multiple covers with balls II: Weighted averages
VL - 54
ER -
TY - CONF
AB - We present a novel optimization-based algorithm for the design and fabrication of customized, deformable input devices, capable of continuously sensing their deformation. We propose to embed piezoresistive sensing elements into flexible 3D printed objects. These sensing elements are then utilized to recover rich and natural user interactions at runtime. Designing such objects is a challenging and hard problem if attempted manually for all but the simplest geometries and deformations. Our method simultaneously optimizes the internal routing of the sensing elements and computes a mapping from low-level sensor readings to user-specified outputs in order to minimize reconstruction error. We demonstrate the power and flexibility of the approach by designing and fabricating a set of flexible input devices. Our results indicate that the optimization-based design greatly outperforms manual routings in terms of reconstruction accuracy and thus interaction fidelity.
AU - Bächer, Moritz
AU - Hepp, Benjamin
AU - Pece, Fabrizio
AU - Kry, Paul
AU - Bickel, Bernd
AU - Thomaszewski, Bernhard
AU - Hilliges, Otmar
ID - 1319
TI - DefSense: computational design of customized deformable input devices
ER -
TY - CONF
AB - In recent years, several biomolecular systems have been shown to be scale-invariant (SI), i.e. to show the same output dynamics when exposed to geometrically scaled input signals (u → pu, p > 0) after pre-adaptation to accordingly scaled constant inputs. In this article, we show that SI systems-as well as systems invariant with respect to other input transformations-can realize nonlinear differential operators: when excited by inputs obeying functional forms characteristic for a given class of invariant systems, the systems' outputs converge to constant values directly quantifying the speed of the input.
AU - Lang, Moritz
AU - Sontag, Eduardo
ID - 1320
TI - Scale-invariant systems realize nonlinear differential operators
VL - 2016-July
ER -
TY - JOUR
AB - Direct reciprocity is a major mechanism for the evolution of cooperation. Several classical studies have suggested that humans should quickly learn to adopt reciprocal strategies to establish mutual cooperation in repeated interactions. On the other hand, the recently discovered theory of ZD strategies has found that subjects who use extortionate strategies are able to exploit and subdue cooperators. Although such extortioners have been predicted to succeed in any population of adaptive opponents, theoretical follow-up studies questioned whether extortion can evolve in reality. However, most of these studies presumed that individuals have similar strategic possibilities and comparable outside options, whereas asymmetries are ubiquitous in real world applications. Here we show with a model and an economic experiment that extortionate strategies readily emerge once subjects differ in their strategic power. Our experiment combines a repeated social dilemma with asymmetric partner choice. In our main treatment there is one randomly chosen group member who is unilaterally allowed to exchange one of the other group members after every ten rounds of the social dilemma. We find that this asymmetric replacement opportunity generally promotes cooperation, but often the resulting payoff distribution reflects the underlying power structure. Almost half of the subjects in a better strategic position turn into extortioners, who quickly proceed to exploit their peers. By adapting their cooperation probabilities consistent with ZD theory, extortioners force their co-players to cooperate without being similarly cooperative themselves. Comparison to non-extortionate players under the same conditions indicates a substantial net gain to extortion. Our results thus highlight how power asymmetries can endanger mutually beneficial interactions, and transform them into exploitative relationships. In particular, our results indicate that the extortionate strategies predicted from ZD theory could play a more prominent role in our daily interactions than previously thought.
AU - Hilbe, Christian
AU - Hagel, Kristin
AU - Milinski, Manfred
ID - 1322
IS - 10
JF - PLoS One
TI - Asymmetric power boosts extortion in an economic experiment
VL - 11
ER -
TY - JOUR
AB - Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices. Unitary EPSPs failed to initiate a spike in CA3 neurons under control conditions, but reliably discharged them after induction of presynaptic short-term plasticity. Remarkably, PTP switched mossy fiber synapses into full detonators for tens of seconds. Plasticity-dependent detonation may be critical for efficient coding, storage, and recall of information in the granule cell–CA3 cell network.
AU - Vyleta, Nicholas
AU - Borges Merjane, Carolina
AU - Jonas, Peter M
ID - 1323
JF - eLife
TI - Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses
VL - 5
ER -
TY - CONF
AB - DEC-POMDPs extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. DEC-POMDPs have been studied with finite-horizon and infinite-horizon discounted-sum objectives, and there exist solvers both for exact and approximate solutions. In this work we consider Goal-DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new and novel method to solve the problem that extends methods for finite-horizon DEC-POMDPs and the RTDP-Bel approach for POMDPs. We present experimental results on several examples, and show that our approach presents promising results. Copyright
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
ID - 1324
T2 - Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling
TI - Indefinite-horizon reachability in Goal-DEC-POMDPs
VL - 2016-January
ER -
TY - CONF
AB - We study graphs and two-player games in which rewards are assigned to states, and the goal of the players is to satisfy or dissatisfy certain property of the generated outcome, given as a mean payoff property. Since the notion of mean-payoff does not reflect possible fluctuations from the mean-payoff along a run, we propose definitions and algorithms for capturing the stability of the system, and give algorithms for deciding if a given mean payoff and stability objective can be ensured in the system.
AU - Brázdil, Tomáš
AU - Forejt, Vojtěch
AU - Kučera, Antonín
AU - Novotny, Petr
ID - 1325
TI - Stability in graphs and games
VL - 59
ER -
TY - CONF
AB - Energy Markov Decision Processes (EMDPs) are finite-state Markov decision processes where each transition is assigned an integer counter update and a rational payoff. An EMDP configuration is a pair s(n), where s is a control state and n is the current counter value. The configurations are changed by performing transitions in the standard way. We consider the problem of computing a safe strategy (i.e., a strategy that keeps the counter non-negative) which maximizes the expected mean payoff.
AU - Brázdil, Tomáš
AU - Kučera, Antonín
AU - Novotny, Petr
ID - 1326
TI - Optimizing the expected mean payoff in Energy Markov Decision Processes
VL - 9938
ER -
TY - CONF
AB - We consider partially observable Markov decision processes (POMDPs) with a set of target states and positive integer costs associated with every transition. The traditional optimization objective (stochastic shortest path) asks to minimize the expected total cost until the target set is reached. We extend the traditional framework of POMDPs to model energy consumption, which represents a hard constraint. The energy levels may increase and decrease with transitions, and the hard constraint requires that the energy level must remain positive in all steps till the target is reached. First, we present a novel algorithm for solving POMDPs with energy levels, developing on existing POMDP solvers and using RTDP as its main method. Our second contribution is related to policy representation. For larger POMDP instances the policies computed by existing solvers are too large to be understandable. We present an automated procedure based on machine learning techniques that automatically extracts important decisions of the policy allowing us to compute succinct human readable policies. Finally, we show experimentally that our algorithm performs well and computes succinct policies on a number of POMDP instances from the literature that were naturally enhanced with energy levels.
AU - Brázdil, Tomáš
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Gupta, Anchit
AU - Novotny, Petr
ID - 1327
T2 - Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems
TI - Stochastic shortest path with energy constraints in POMDPs
ER -
TY - JOUR
AB - Hole spins have gained considerable interest in the past few years due to their potential for fast electrically controlled qubits. Here, we study holes confined in Ge hut wires, a so-far unexplored type of nanostructure. Low-temperature magnetotransport measurements reveal a large anisotropy between the in-plane and out-of-plane g-factors of up to 18. Numerical simulations verify that this large anisotropy originates from a confined wave function of heavy-hole character. A light-hole admixture of less than 1% is estimated for the states of lowest energy, leading to a surprisingly large reduction of the out-of-plane g-factors compared with those for pure heavy holes. Given this tiny light-hole contribution, the spin lifetimes are expected to be very long, even in isotopically nonpurified samples.
AU - Watzinger, Hannes
AU - Kloeffel, Christoph
AU - Vukusic, Lada
AU - Rossell, Marta
AU - Sessi, Violetta
AU - Kukucka, Josip
AU - Kirchschlager, Raimund
AU - Lausecker, Elisabeth
AU - Truhlar, Alisha
AU - Glaser, Martin
AU - Rastelli, Armando
AU - Fuhrer, Andreas
AU - Loss, Daniel
AU - Katsaros, Georgios
ID - 1328
IS - 11
JF - Nano Letters
TI - Heavy-hole states in germanium hut wires
VL - 16
ER -
TY - JOUR
AB - Daphnia species have become models for ecological genomics and exhibit interesting features, such as high phenotypic plasticity and a densely packed genome with many lineage-specific genes. They are also cyclic parthenogenetic, with alternating asexual and sexual cycles and environmental sex determination. Here, we present a de novo transcriptome assembly of over 32,000 D. galeata genes and use it to investigate gene expression in females and spontaneously produced males of two clonal lines derived from lakes in Germany and the Czech Republic. We find that only a low percentage (18%) of genes shows sex-biased expression and that there are many more female-biased gene (FBG) than male-biased gene (MBG). Furthermore, FBGs tend to be more conserved between species than MBGs in both sequence and expression. These patterns may be a consequence of cyclic parthenogenesis leading to a relaxation of purifying selection on MBGs. The two clonal lines show considerable differences in both number and identity of sex-biased genes, suggesting that they may have reproductive strategies differing in their investment in sexual reproduction. Orthologs of key genes in the sex determination and juvenile hormone pathways, which are thought to be important for the transition from asexual to sexual reproduction, are present in D. galeata and highly conserved among Daphnia species.
AU - Huylmans, Ann K
AU - López Ezquerra, Alberto
AU - Parsch, John
AU - Cordellier, Mathilde
ID - 1329
IS - 10
JF - Genome Biology and Evolution
TI - De novo transcriptome assembly and sex-biased gene expression in the cyclical parthenogenetic Daphnia galeata
VL - 8
ER -
TY - JOUR
AB - In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K.
AU - Akopyan, Arseniy
AU - Balitskiy, Alexey
ID - 1330
IS - 2
JF - Israel Journal of Mathematics
TI - Billiards in convex bodies with acute angles
VL - 216
ER -
TY - JOUR
AB - Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6- dependent genes and establishes a novel connection between cytokinin and oxidative stress response.
AU - Zwack, Paul
AU - De Clercq, Inge
AU - Howton, Timothy
AU - Hallmark, H Tucker
AU - Hurny, Andrej
AU - Keshishian, Erika
AU - Parish, Alyssa
AU - Benková, Eva
AU - Mukhtar, M Shahid
AU - Van Breusegem, Frank
AU - Rashotte, Aaron
ID - 1331
IS - 2
JF - Plant Physiology
TI - Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress
VL - 172
ER -