TY - CONF AB - Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol. AU - Arming, Sebastian AU - Bartocci, Ezio AU - Chatterjee, Krishnendu AU - Katoen, Joost P AU - Sokolova, Ana ID - 79 TI - Parameter-independent strategies for pMDPs via POMDPs VL - 11024 ER - TY - JOUR AB - We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case. AU - Deuchert, Andreas AU - Geisinge, Alissa AU - Hainzl, Christian AU - Loss, Michael ID - 400 IS - 5 JF - Annales Henri Poincare TI - Persistence of translational symmetry in the BCS model with radial pair interaction VL - 19 ER - TY - JOUR AB - Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie’s Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data. AU - Bod’Ová, Katarína AU - Mitchell, Gabriel AU - Harpaz, Roy AU - Schneidman, Elad AU - Tkacik, Gasper ID - 406 IS - 3 JF - PLoS One TI - Probabilistic models of individual and collective animal behavior VL - 13 ER - TY - JOUR AB - Temperate bacteriophages integrate in bacterial genomes as prophages and represent an important source of genetic variation for bacterial evolution, frequently transmitting fitness-augmenting genes such as toxins responsible for virulence of major pathogens. However, only a fraction of bacteriophage infections are lysogenic and lead to prophage acquisition, whereas the majority are lytic and kill the infected bacteria. Unless able to discriminate lytic from lysogenic infections, mechanisms of immunity to bacteriophages are expected to act as a double-edged sword and increase the odds of survival at the cost of depriving bacteria of potentially beneficial prophages. We show that although restriction-modification systems as mechanisms of innate immunity prevent both lytic and lysogenic infections indiscriminately in individual bacteria, they increase the number of prophage-acquiring individuals at the population level. We find that this counterintuitive result is a consequence of phage-host population dynamics, in which restriction-modification systems delay infection onset until bacteria reach densities at which the probability of lysogeny increases. These results underscore the importance of population-level dynamics as a key factor modulating costs and benefits of immunity to temperate bacteriophages AU - Pleska, Maros AU - Lang, Moritz AU - Refardt, Dominik AU - Levin, Bruce AU - Guet, Calin C ID - 457 IS - 2 JF - Nature Ecology and Evolution TI - Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity VL - 2 ER - TY - JOUR AB - Many animals use antimicrobials to prevent or cure disease [1,2]. For example, some animals will ingest plants with medicinal properties, both prophylactically to prevent infection and therapeutically to self-medicate when sick. Antimicrobial substances are also used as topical disinfectants, to prevent infection, protect offspring and to sanitise their surroundings [1,2]. Social insects (ants, bees, wasps and termites) build nests in environments with a high abundance and diversity of pathogenic microorganisms — such as soil and rotting wood — and colonies are often densely crowded, creating conditions that favour disease outbreaks. Consequently, social insects have evolved collective disease defences to protect their colonies from epidemics. These traits can be seen as functionally analogous to the immune system of individual organisms [3,4]. This ‘social immunity’ utilises antimicrobials to prevent and eradicate infections, and to keep the brood and nest clean. However, these antimicrobial compounds can be harmful to the insects themselves, and it is unknown how colonies prevent collateral damage when using them. Here, we demonstrate that antimicrobial acids, produced by workers to disinfect the colony, are harmful to the delicate pupal brood stage, but that the pupae are protected from the acids by the presence of a silk cocoon. Garden ants spray their nests with an antimicrobial poison to sanitize contaminated nestmates and brood. Here, Pull et al show that they also prophylactically sanitise their colonies, and that the silk cocoon serves as a barrier to protect developing pupae, thus preventing collateral damage during nest sanitation. AU - Pull, Christopher AU - Metzler, Sina AU - Naderlinger, Elisabeth AU - Cremer, Sylvia ID - 55 IS - 19 JF - Current Biology TI - Protection against the lethal side effects of social immunity in ants VL - 28 ER - TY - JOUR AB - We consider large random matrices X with centered, independent entries but possibly di erent variances. We compute the normalized trace of f(X)g(X∗) for f, g functions analytic on the spectrum of X. We use these results to compute the long time asymptotics for systems of coupled di erential equations with random coe cients. We show that when the coupling is critical, the norm squared of the solution decays like t−1/2. AU - Erdös, László AU - Krüger, Torben H AU - Renfrew, David T ID - 181 IS - 3 JF - SIAM Journal on Mathematical Analysis TI - Power law decay for systems of randomly coupled differential equations VL - 50 ER - TY - JOUR AB - We construct quantizations of multiplicative hypertoric varieties using an algebra of q-difference operators on affine space, where q is a root of unity in C. The quantization defines a matrix bundle (i.e. Azumaya algebra) over the multiplicative hypertoric variety and admits an explicit finite étale splitting. The global sections of this Azumaya algebra is a hypertoric quantum group, and we prove a localization theorem. We introduce a general framework of Frobenius quantum moment maps and their Hamiltonian reductions; our results shed light on an instance of this framework. AU - Ganev, Iordan V ID - 322 JF - Journal of Algebra TI - Quantizations of multiplicative hypertoric varieties at a root of unity VL - 506 ER - TY - GEN AB - Implementation of the inference method in Matlab, including three applications of the method: The first one for the model of ant motion, the second one for bacterial chemotaxis, and the third one for the motion of fish. AU - Bod’Ová, Katarína AU - Mitchell, Gabriel AU - Harpaz, Roy AU - Schneidman, Elad AU - Tkačik, Gašper ID - 9831 TI - Implementation of the inference method in Matlab ER - TY - CONF AB - We address the problem of analyzing the reachable set of a polynomial nonlinear continuous system by over-approximating the flowpipe of its dynamics. The common approach to tackle this problem is to perform a numerical integration over a given time horizon based on Taylor expansion and interval arithmetic. However, this method results to be very conservative when there is a large difference in speed between trajectories as time progresses. In this paper, we propose to use combinations of barrier functions, which we call piecewise barrier tube (PBT), to over-approximate flowpipe. The basic idea of PBT is that for each segment of a flowpipe, a coarse box which is big enough to contain the segment is constructed using sampled simulation and then in the box we compute by linear programming a set of barrier functions (called barrier tube or BT for short) which work together to form a tube surrounding the flowpipe. The benefit of using PBT is that (1) BT is independent of time and hence can avoid being stretched and deformed by time; and (2) a small number of BTs can form a tight over-approximation for the flowpipe, which means that the computation required to decide whether the BTs intersect the unsafe set can be reduced significantly. We implemented a prototype called PBTS in C++. Experiments on some benchmark systems show that our approach is effective. AU - Kong, Hui AU - Bartocci, Ezio AU - Henzinger, Thomas A ID - 142 TI - Reachable set over-approximation for nonlinear systems using piecewise barrier tubes VL - 10981 ER - TY - JOUR AB - We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements. AU - Amaro, Pedro AU - Loureiro, Ulisses AU - Safari, Laleh AU - Fratini, Filippo AU - Indelicato, Paul AU - Stöhlker, Thomas AU - Santos, José ID - 427 IS - 2 JF - Physical Review A - Atomic, Molecular, and Optical Physics TI - Quantum interference in laser spectroscopy of highly charged lithiumlike ions VL - 97 ER -