@article{3159,
abstract = {The structure of hierarchical networks in biological and physical systems has long been characterized using the Horton-Strahler ordering scheme. The scheme assigns an integer order to each edge in the network based on the topology of branching such that the order increases from distal parts of the network (e.g., mountain streams or capillaries) to the "root" of the network (e.g., the river outlet or the aorta). However, Horton-Strahler ordering cannot be applied to networks with loops because they they create a contradiction in the edge ordering in terms of which edge precedes another in the hierarchy. Here, we present a generalization of the Horton-Strahler order to weighted planar reticular networks, where weights are assumed to correlate with the importance of network edges, e.g., weights estimated from edge widths may correlate to flow capacity. Our method assigns hierarchical levels not only to edges of the network, but also to its loops, and classifies the edges into reticular edges, which are responsible for loop formation, and tree edges. In addition, we perform a detailed and rigorous theoretical analysis of the sensitivity of the hierarchical levels to weight perturbations. In doing so, we show that the ordering of the reticular edges is more robust to noise in weight estimation than is the ordering of the tree edges. We discuss applications of this generalized Horton-Strahler ordering to the study of leaf venation and other biological networks.},
author = {Mileyko, Yuriy and Edelsbrunner, Herbert and Price, Charles and Weitz, Joshua},
journal = {PLoS One},
number = {6},
publisher = {Public Library of Science},
title = {{Hierarchical ordering of reticular networks}},
doi = {10.1371/journal.pone.0036715},
volume = {7},
year = {2012},
}
@article{3161,
abstract = {Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses activation of the NLRP inflammasome. For agents that inhibit translation through mechanisms that do not involve loss of potassium, high extracellular potassium suppresses IL-1ß processing through a mechanism that remains undefined.},
author = {Vyleta, Meghan and Wong, John and Magun, Bruce},
journal = {PLoS One},
number = {5},
publisher = {Public Library of Science},
title = {{Suppression of ribosomal function triggers innate immune signaling through activation of the NLRP3 inflammasome}},
doi = {10.1371/journal.pone.0036044},
volume = {7},
year = {2012},
}
@inproceedings{3123,
abstract = {We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using nearby particle velocities to advect the mesh vertices. The mesh connectivity remains mostly unchanged across time-steps; it is only modified locally for topology change events or for the improvement of triangle quality. In order to ensure that the surface mesh does not diverge from the underlying particle simulation, we periodically project the mesh surface onto an implicit surface defined by the physics simulation. The mesh surface gives us several advantages over previous SPH surface tracking techniques. We demonstrate a new method for surface tension calculations that clearly outperforms the state of the art in SPH surface tension for computer graphics. We also demonstrate a method for tracking detailed surface information (like colors) that is less susceptible to numerical diffusion than competing techniques. Finally, our temporally-coherent surface mesh allows us to simulate high-resolution surface wave dynamics without being limited by the particle resolution of the SPH simulation.},
author = {Yu, Jihun and Wojtan, Christopher J and Turk, Greg and Yap, Chee},
booktitle = {Computer Graphics Forum},
location = {Cagliari, Sardinia, Italy},
number = {2},
pages = {815 -- 824},
publisher = {Blackwell Publishing},
title = {{Explicit mesh surfaces for particle based fluids}},
doi = {10.1111/j.1467-8659.2012.03062.x},
volume = {31},
year = {2012},
}
@article{3130,
abstract = {Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.},
author = {Bergmiller, Tobias and Ackermann, Martin and Silander, Olin},
journal = {PLoS Genetics},
number = {6},
publisher = {Public Library of Science},
title = {{Patterns of evolutionary conservation of essential genes correlate with their compensability}},
doi = {10.1371/journal.pgen.1002803},
volume = {8},
year = {2012},
}
@article{3166,
abstract = {There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors. Reviewers: this article was reviewed by Prof. William Martin, Prof. Eors Szathmary (nominated by Dr. Gaspar Jekely) and Dr. Adam Kun (nominated by Dr. Sandor Pongor)},
author = {Vladar, Harold},
journal = {Biology Direct},
publisher = {BioMed Central},
title = {{Amino acid fermentation at the origin of the genetic code}},
doi = {10.1186/1745-6150-7-6},
volume = {7},
year = {2012},
}
@article{3262,
abstract = {Living cells must control the reading out or "expression" of information encoded in their genomes, and this regulation often is mediated by transcription factors--proteins that bind to DNA and either enhance or repress the expression of nearby genes. But the expression of transcription factor proteins is itself regulated, and many transcription factors regulate their own expression in addition to responding to other input signals. Here we analyze the simplest of such self-regulatory circuits, asking how parameters can be chosen to optimize information transmission from inputs to outputs in the steady state. Some nonzero level of self-regulation is almost always optimal, with self-activation dominant when transcription factor concentrations are low and self-repression dominant when concentrations are high. In steady state the optimal self-activation is never strong enough to induce bistability, although there is a limit in which the optimal parameters are very close to the critical point.},
author = {Tkacik, Gasper and Walczak, Aleksandra and Bialek, William},
journal = { Physical Review E statistical nonlinear and soft matter physics },
number = {4},
publisher = {American Institute of Physics},
title = {{Optimizing information flow in small genetic networks. III. A self-interacting gene}},
doi = {10.1103/PhysRevE.85.041903},
volume = {85},
year = {2012},
}
@article{3274,
abstract = {A boundary element model of a tunnel running through horizontally layered soil with anisotropic material properties is presented. Since there is no analytical fundamental solution for wave propagation inside a layered orthotropic medium in 3D, the fundamental displacements and stresses have to be calculated numerically. In our model this is done in the Fourier domain with respect to space and time. The assumption of a straight tunnel with infinite extension in the x direction makes it possible to decouple the system for every wave number kx, leading to a 2.5D-problem, which is suited for parallel computation. The special form of the fundamental solution, resulting from our Fourier ansatz, and the fact, that the calculation of the boundary integral equation is performed in the Fourier domain, enhances the stability and efficiency of the numerical calculations.},
author = {Rieckh, Georg and Kreuzer, Wolfgang and Waubke, Holger and Balazs, Peter},
journal = { Engineering Analysis with Boundary Elements},
number = {6},
pages = {960 -- 967},
publisher = {Elsevier},
title = {{A 2.5D-Fourier-BEM model for vibrations in a tunnel running through layered anisotropic soil}},
doi = {10.1016/j.enganabound.2011.12.014},
volume = {36},
year = {2012},
}
@inproceedings{3279,
abstract = {We show a hardness-preserving construction of a PRF from any length doubling PRG which improves upon known constructions whenever we can put a non-trivial upper bound q on the number of queries to the PRF. Our construction requires only O(logq) invocations to the underlying PRG with each query. In comparison, the number of invocations by the best previous hardness-preserving construction (GGM using Levin's trick) is logarithmic in the hardness of the PRG. For example, starting from an exponentially secure PRG {0,1} n → {0,1} 2n, we get a PRF which is exponentially secure if queried at most q = exp(√n)times and where each invocation of the PRF requires Θ(√n) queries to the underlying PRG. This is much less than the Θ(n) required by known constructions.
},
author = {Jain, Abhishek and Pietrzak, Krzysztof Z and Tentes, Aris},
location = {Taormina, Sicily, Italy},
pages = {369 -- 382},
publisher = {Springer},
title = {{Hardness preserving constructions of pseudorandom functions}},
doi = {10.1007/978-3-642-28914-9_21},
volume = {7194},
year = {2012},
}
@inproceedings{3281,
abstract = {We consider the problem of amplifying the "lossiness" of functions. We say that an oracle circuit C*: {0,1} m → {0,1}* amplifies relative lossiness from ℓ/n to L/m if for every function f:{0,1} n → {0,1} n it holds that 1 If f is injective then so is C f. 2 If f has image size of at most 2 n-ℓ, then C f has image size at most 2 m-L. The question is whether such C* exists for L/m ≫ ℓ/n. This problem arises naturally in the context of cryptographic "lossy functions," where the relative lossiness is the key parameter. We show that for every circuit C* that makes at most t queries to f, the relative lossiness of C f is at most L/m ≤ ℓ/n + O(log t)/n. In particular, no black-box method making a polynomial t = poly(n) number of queries can amplify relative lossiness by more than an O(logn)/n additive term. We show that this is tight by giving a simple construction (cascading with some randomization) that achieves such amplification.},
author = {Pietrzak, Krzysztof Z and Rosen, Alon and Segev, Gil},
location = {Taormina, Sicily, Italy},
pages = {458 -- 475},
publisher = {Springer},
title = {{Lossy functions do not amplify well}},
doi = {10.1007/978-3-642-28914-9_26},
volume = {7194},
year = {2012},
}
@inproceedings{3250,
abstract = {The Learning Parity with Noise (LPN) problem has recently found many applications in cryptography as the hardness assumption underlying the constructions of "provably secure" cryptographic schemes like encryption or authentication protocols. Being provably secure means that the scheme comes with a proof showing that the existence of an efficient adversary against the scheme implies that the underlying hardness assumption is wrong. LPN based schemes are appealing for theoretical and practical reasons. On the theoretical side, LPN based schemes offer a very strong security guarantee. The LPN problem is equivalent to the problem of decoding random linear codes, a problem that has been extensively studied in the last half century. The fastest known algorithms run in exponential time and unlike most number-theoretic problems used in cryptography, the LPN problem does not succumb to known quantum algorithms. On the practical side, LPN based schemes are often extremely simple and efficient in terms of code-size as well as time and space requirements. This makes them prime candidates for light-weight devices like RFID tags, which are too weak to implement standard cryptographic primitives like the AES block-cipher. This talk will be a gentle introduction to provable security using simple LPN based schemes as examples. Starting from pseudorandom generators and symmetric key encryption, over secret-key authentication protocols, and, if time admits, touching on recent constructions of public-key identification, commitments and zero-knowledge proofs.},
author = {Pietrzak, Krzysztof Z},
location = {Špindlerův Mlýn, Czech Republic},
pages = {99 -- 114},
publisher = {Springer},
title = {{Cryptography from learning parity with noise}},
doi = {10.1007/978-3-642-27660-6_9},
volume = {7147},
year = {2012},
}
@article{3248,
abstract = {We describe RTblob, a high speed vision system that detects objects in cluttered scenes based on their color and shape at a speed of over 800 frames/s. Because the system is available as open-source software and relies only on off-the-shelf PC hardware components, it can provide the basis for multiple application scenarios. As an illustrative example, we show how RTblob can be used in a robotic table tennis scenario to estimate ball trajectories through 3D space simultaneously from four cameras images at a speed of 200 Hz.},
author = {Lampert, Christoph and Peters, Jan},
journal = {Journal of Real-Time Image Processing},
number = {1},
pages = {31 -- 41},
publisher = {Springer},
title = {{Real-time detection of colored objects in multiple camera streams with off-the-shelf hardware components}},
doi = {10.1007/s11554-010-0168-3},
volume = {7},
year = {2012},
}
@article{3243,
author = {Danowski, Patrick},
journal = {Büchereiperspektiven},
pages = {11},
publisher = {Buchereiverband Österreichs},
title = {{Zwischen Technologie und Information}},
volume = {1/2012},
year = {2012},
}
@article{6588,
abstract = {First we note that the best polynomial approximation to vertical bar x vertical bar on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two intervals can be given in elementary functions.},
author = {Pausinger, Florian},
issn = {1812-9471},
journal = {Journal of Mathematical Physics, Analysis, Geometry},
number = {1},
pages = {63--78},
publisher = {B. Verkin Institute for Low Temperature Physics and Engineering},
title = {{Elementary solutions of the bernstein problem on two intervals}},
volume = {8},
year = {2012},
}
@inproceedings{2891,
abstract = {Quantitative automata are nondeterministic finite automata with edge weights. They value a
run by some function from the sequence of visited weights to the reals, and value a word by its
minimal/maximal run. They generalize boolean automata, and have gained much attention in
recent years. Unfortunately, important automaton classes, such as sum, discounted-sum, and
limit-average automata, cannot be determinized. Yet, the quantitative setting provides the potential
of approximate determinization. We define approximate determinization with respect to
a distance function, and investigate this potential.
We show that sum automata cannot be determinized approximately with respect to any
distance function. However, restricting to nonnegative weights allows for approximate determinization
with respect to some distance functions.
Discounted-sum automata allow for approximate determinization, as the influence of a word’s
suffix is decaying. However, the naive approach, of unfolding the automaton computations up
to a sufficient level, is shown to be doubly exponential in the discount factor. We provide an
alternative construction that is singly exponential in the discount factor, in the precision, and
in the number of states. We prove matching lower bounds, showing exponential dependency on
each of these three parameters.
Average and limit-average automata are shown to prohibit approximate determinization with
respect to any distance function, and this is the case even for two weights, 0 and 1.},
author = {Boker, Udi and Henzinger, Thomas A},
booktitle = {Leibniz International Proceedings in Informatics},
location = {Hyderabad, India},
pages = {362 -- 373},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Approximate determinization of quantitative automata}},
doi = {10.4230/LIPIcs.FSTTCS.2012.362},
volume = {18},
year = {2012},
}
@inproceedings{2916,
abstract = {The classical (boolean) notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a quantitative measure for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intu- itively, tolerating errors (while counting them) in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.},
author = {Cerny, Pavol and Chmelik, Martin and Henzinger, Thomas A and Radhakrishna, Arjun},
booktitle = {Electronic Proceedings in Theoretical Computer Science},
location = {Napoli, Italy},
pages = {29 -- 42},
publisher = {EPTCS},
title = {{Interface Simulation Distances}},
doi = {10.4204/EPTCS.96.3},
volume = {96},
year = {2012},
}
@inproceedings{2942,
abstract = {Interface theories provide a formal framework for component-based development of software and hardware which supports the incremental design of systems and the independent implementability of components. These capabilities are ensured through mathematical properties of the parallel composition operator and the refinement relation for components. More recently, a conjunction operation was added to interface theories in order to provide support for handling multiple viewpoints, requirements engineering, and component reuse. Unfortunately, the conjunction operator does not allow independent implementability in general. In this paper, we study conditions that need to be imposed on interface models in order to enforce independent implementability with respect to conjunction. We focus on multiple viewpoint specifications and propose a new compatibility criterion between two interfaces, which we call orthogonality. We show that orthogonal interfaces can be refined separately, while preserving both orthogonality and composability with other interfaces. We illustrate the independent implementability of different viewpoints with a FIFO buffer example.},
author = {Henzinger, Thomas A and Nickovic, Dejan},
booktitle = { Conference proceedings Monterey Workshop 2012},
location = {Oxford, UK},
pages = {380 -- 395},
publisher = {Springer},
title = {{Independent implementability of viewpoints}},
doi = {10.1007/978-3-642-34059-8_20},
volume = {7539},
year = {2012},
}
@inproceedings{2947,
abstract = {We introduce games with probabilistic uncertainty, a model for controller synthesis in which the controller observes the state through imprecise sensors that provide correct information about the current state with a fixed probability. That is, in each step, the sensors return an observed state, and given the observed state, there is a probability distribution (due to the estimation error) over the actual current state. The controller must base its decision on the observed state (rather than the actual current state, which it does not know). On the other hand, we assume that the environment can perfectly observe the current state. We show that controller synthesis for qualitative ω-regular objectives in our model can be reduced in polynomial time to standard partial-observation stochastic games, and vice-versa. As a consequence we establish the precise decidability frontier for the new class of games, and establish optimal complexity results for all the decidable problems.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Majumdar, Ritankar},
location = {Thiruvananthapuram, India},
pages = {385 -- 399},
publisher = {Springer},
title = {{Equivalence of games with probabilistic uncertainty and partial observation games}},
doi = {10.1007/978-3-642-33386-6_30},
volume = {7561},
year = {2012},
}
@article{3128,
abstract = {We consider two-player zero-sum stochastic games on graphs with ω-regular winning conditions specified as parity objectives. These games have applications in the design and control of reactive systems. We survey the complexity results for the problem of deciding the winner in such games, and in classes of interest obtained as special cases, based on the information and the power of randomization available to the players, on the class of objectives and on the winning mode. On the basis of information, these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have complete view of the game). The one-sided partial-observation games have two important subclasses: the one-player games, known as partial-observation Markov decision processes (POMDPs), and the blind one-player games, known as probabilistic automata. On the basis of randomization, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization. Finally, various classes of games are obtained by restricting the parity objective to a reachability, safety, Büchi, or coBüchi condition. We also consider several winning modes, such as sure-winning (i.e., all outcomes of a strategy have to satisfy the winning condition), almost-sure winning (i.e., winning with probability 1), limit-sure winning (i.e., winning with probability arbitrarily close to 1), and value-threshold winning (i.e., winning with probability at least ν, where ν is a given rational). },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
journal = {Formal Methods in System Design},
number = {2},
pages = {268 -- 284},
publisher = {Springer},
title = {{A survey of partial-observation stochastic parity games}},
doi = {10.1007/s10703-012-0164-2},
volume = {43},
year = {2012},
}
@inproceedings{3135,
abstract = {We introduce consumption games, a model for discrete interactive system with multiple resources that are consumed or reloaded independently. More precisely, a consumption game is a finite-state graph where each transition is labeled by a vector of resource updates, where every update is a non-positive number or ω. The ω updates model the reloading of a given resource. Each vertex belongs either to player □ or player ◇, where the aim of player □ is to play so that the resources are never exhausted. We consider several natural algorithmic problems about consumption games, and show that although these problems are computationally hard in general, they are solvable in polynomial time for every fixed number of resource types (i.e., the dimension of the update vectors) and bounded resource updates. },
author = {Brázdil, Brázdil and Chatterjee, Krishnendu and Kučera, Antonín and Novotny, Petr},
location = {Berkeley, CA, USA},
pages = {23 -- 38},
publisher = {Springer},
title = {{Efficient controller synthesis for consumption games with multiple resource types}},
doi = {10.1007/978-3-642-31424-7_8},
volume = {7358},
year = {2012},
}
@inproceedings{3255,
abstract = {In this paper we survey results of two-player games on graphs and Markov decision processes with parity, mean-payoff and energy objectives, and the combination of mean-payoff and energy objectives with parity objectives. These problems have applications in verification and synthesis of reactive systems in resource-constrained environments.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Lednice, Czech Republic},
pages = {37 -- 46},
publisher = {Springer},
title = {{Games and Markov decision processes with mean payoff parity and energy parity objectives}},
doi = {10.1007/978-3-642-25929-6_3},
volume = {7119},
year = {2012},
}