@article{2242,
abstract = {MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. Using deep sequencing and Northern blotting, we characterized miRNA expression in wild type and miR-155-deficient dendritic cells (DCs) and macrophages. Analysis of different stimuli (LPS, LDL, eLDL, oxLDL) reveals a direct influence of miR-155 on the expression levels of other miRNAs. For example, miR-455 is negatively regulated in miR-155-deficient cells possibly due to inhibition of the transcription factor C/EBPbeta by miR-155. Based on our comprehensive data sets, we propose a model of hierarchical miRNA expression dominated by miR-155 in DCs and macrophages.},
author = {Dueck, Anne and Eichner, Alexander and Sixt, Michael K and Meister, Gunter},
issn = {00145793},
journal = {FEBS Letters},
number = {4},
pages = {632 -- 640},
publisher = {Elsevier},
title = {{A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation}},
doi = {10.1016/j.febslet.2014.01.009},
volume = {588},
year = {2014},
}
@inbook{2245,
abstract = {Exogenous application of biologically important molecules for plant growth promotion and/or regulation is very common both in plant research and horticulture. Plant hormones such as auxins and cytokinins are classes of compounds which are often applied exogenously. Nevertheless, plants possess a well-established machinery to regulate the active pool of exogenously applied compounds by converting them to metabolites and conjugates. Consequently, it is often very useful to know the in vivo status of applied compounds to connect them with some of the regulatory events in plant developmental processes. The in vivo status of applied compounds can be measured by incubating plants with radiolabeled compounds, followed by extraction, purification, and HPLC metabolic profiling of plant extracts. Recently we have used this method to characterize the intracellularly localized PIN protein, PIN5. Here we explain the method in detail, with a focus on general application. },
author = {Simon, Sibu and Skůpa, Petr and Dobrev, Petre and Petrášek, Jan and Zažímalová, Eva and Friml, Jirí},
booktitle = {Plant Chemical Genomics},
editor = {Hicks, Glenn and Robert, Stéphanie},
issn = {10643745},
pages = {255 -- 264},
publisher = {Springer},
title = {{Analyzing the in vivo status of exogenously applied auxins: A HPLC-based method to characterize the intracellularly localized auxin transporters}},
doi = {10.1007/978-1-62703-592-7_23},
volume = {1056},
year = {2014},
}
@article{2246,
abstract = {Muller games are played by two players moving a token along a graph; the winner is determined by the set of vertices that occur infinitely often. The central algorithmic problem is to compute the winning regions for the players. Different classes and representations of Muller games lead to problems of varying computational complexity. One such class are parity games; these are of particular significance in computational complexity, as they remain one of the few combinatorial problems known to be in NP ∩ co-NP but not known to be in P. We show that winning regions for a Muller game can be determined from the alternating structure of its traps. To every Muller game we then associate a natural number that we call its trap depth; this parameter measures how complicated the trap structure is. We present algorithms for parity games that run in polynomial time for graphs of bounded trap depth, and in general run in time exponential in the trap depth. },
author = {Grinshpun, Andrey and Phalitnonkiat, Pakawat and Rubin, Sasha and Tarfulea, Andrei},
issn = {03043975},
journal = {Theoretical Computer Science},
pages = {73 -- 91},
publisher = {Elsevier},
title = {{Alternating traps in Muller and parity games}},
doi = {10.1016/j.tcs.2013.11.032},
volume = {521},
year = {2014},
}
@article{2248,
abstract = {Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain.},
author = {Capek, Daniel and Metscher, Brian and Müller, Gerd},
issn = {15525007},
journal = {Journal of Experimental Zoology Part B: Molecular and Developmental Evolution},
number = {1},
pages = {1 -- 12},
publisher = {Wiley-Blackwell},
title = {{Thumbs down: A molecular-morphogenetic approach to avian digit homology}},
doi = {10.1002/jez.b.22545},
volume = {322},
year = {2014},
}
@article{2249,
abstract = {The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.},
author = {Chen, Yani and Aung, Kyaw and Rolčík, Jakub and Walicki, Kathryn and Friml, Jirí and Brandizzí, Federica},
issn = {09607412},
journal = {Plant Journal},
number = {1},
pages = {97 -- 107},
publisher = {Wiley-Blackwell},
title = {{Inter-regulation of the unfolded protein response and auxin signaling}},
doi = {10.1111/tpj.12373},
volume = {77},
year = {2014},
}
@article{2250,
abstract = {The genome sequences of new viruses often contain many "orphan" or "taxon-specific" proteins apparently lacking homologs. However, because viral proteins evolve very fast, commonly used sequence similarity detection methods such as BLAST may overlook homologs. We analyzed a data set of proteins from RNA viruses characterized as "genus specific" by BLAST. More powerful methods developed recently, such as HHblits or HHpred (available through web-based, user-friendly interfaces), could detect distant homologs of a quarter of these proteins, suggesting that these methods should be used to annotate viral genomes. In-depth manual analyses of a subset of the remaining sequences, guided by contextual information such as taxonomy, gene order, or domain cooccurrence, identified distant homologs of another third. Thus, a combination of powerful automated methods and manual analyses can uncover distant homologs of many proteins thought to be orphans. We expect these methodological results to be also applicable to cellular organisms, since they generally evolve much more slowly than RNA viruses. As an application, we reanalyzed the genome of a bee pathogen, Chronic bee paralysis virus (CBPV). We could identify homologs of most of its proteins thought to be orphans; in each case, identifying homologs provided functional clues. We discovered that CBPV encodes a domain homologous to the Alphavirus methyltransferase-guanylyltransferase; a putative membrane protein, SP24, with homologs in unrelated insect viruses and insect-transmitted plant viruses having different morphologies (cileviruses, higreviruses, blunerviruses, negeviruses); and a putative virion glycoprotein, ORF2, also found in negeviruses. SP24 and ORF2 are probably major structural components of the virionsd.},
author = {Kuchibhatla, Durga and Sherman, Westley and Chung, Betty and Cook, Shelley and Schneider, Georg and Eisenhaber, Birgit and Karlin, David},
issn = {0022538X},
journal = {Journal of Virology},
number = {1},
pages = {10 -- 20},
publisher = {ASM},
title = {{Powerful sequence similarity search methods and in-depth manual analyses can identify remote homologs in many apparently "orphan" viral proteins}},
doi = {10.1128/JVI.02595-13},
volume = {88},
year = {2014},
}
@article{2251,
abstract = {Sharp wave/ripple (SWR, 150–250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.},
author = {Csicsvari, Jozsef L and Dupret, David},
issn = {09628436},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1635},
publisher = {Royal Society, The},
title = {{Sharp wave/ripple network oscillations and learning-associated hippocampal maps}},
doi = {10.1098/rstb.2012.0528},
volume = {369},
year = {2014},
}
@article{2252,
abstract = {The pattern of inheritance and mechanism of sex determination can have important evolutionary consequences. We studied probabilistic sex determination in the ciliate Tetrahymena thermophila, which was previously shown to cause evolution of skewed sex ratios. We find that the genetic background alters the sex determination patterns of mat alleles in heterozygotes and that allelic interaction can differentially influence the expression probability of the 7 sexes. We quantify the dominance relationships between several mat alleles and find that A-type alleles, which specify sex I, are indeed recessive to B-type alleles, which are unable to specify that sex. Our results provide additional support for the presence of modifier loci and raise implications for the dynamics of sex ratios in populations of T. thermophila.},
author = {Phadke, Sujal and Paixao, Tiago and Pham, Tuan and Pham, Stephanie and Zufall, Rebecca},
issn = {00221503},
journal = {Journal of Heredity},
number = {1},
pages = {130 -- 135},
publisher = {Oxford University Press},
title = {{Genetic background alters dominance relationships between mat alleles in the ciliate Tetrahymena Thermophila}},
doi = {10.1093/jhered/est063},
volume = {105},
year = {2014},
}
@article{2253,
abstract = {Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor- glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct. As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.},
author = {Bailly, Aurélien and Wang, Bangjun and Zwiewka, Marta and Pollmann, Stephan and Schenck, Daniel and Lüthen, Hartwig and Schulz, Alexander and Friml, Jirí and Geisler, Markus},
issn = {09607412},
journal = {Plant Journal},
number = {1},
pages = {108 -- 118},
publisher = {Wiley-Blackwell},
title = {{Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth}},
doi = {10.1111/tpj.12369},
volume = {77},
year = {2014},
}
@article{2254,
abstract = {Theta-gamma network oscillations are thought to represent key reference signals for information processing in neuronal ensembles, but the underlying synaptic mechanisms remain unclear. To address this question, we performed whole-cell (WC) patch-clamp recordings from mature hippocampal granule cells (GCs) in vivo in the dentate gyrus of anesthetized and awake rats. GCs in vivo fired action potentials at low frequency, consistent with sparse coding in the dentate gyrus. GCs were exposed to barrages of fast AMPAR-mediated excitatory postsynaptic currents (EPSCs), primarily relayed from the entorhinal cortex, and inhibitory postsynaptic currents (IPSCs), presumably generated by local interneurons. EPSCs exhibited coherence with the field potential predominantly in the theta frequency band, whereas IPSCs showed coherence primarily in the gamma range. Action potentials in GCs were phase locked to network oscillations. Thus, theta-gamma-modulated synaptic currents may provide a framework for sparse temporal coding of information in the dentate gyrus.},
author = {Pernia-Andrade, Alejandro and Jonas, Peter M},
issn = {08966273},
journal = {Neuron},
number = {1},
pages = {140 -- 152},
publisher = {Elsevier},
title = {{Theta-gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations}},
doi = {10.1016/j.neuron.2013.09.046},
volume = {81},
year = {2014},
}
@article{2255,
abstract = {Motivated by applications in biology, we present an algorithm for estimating the length of tube-like shapes in 3-dimensional Euclidean space. In a first step, we combine the tube formula of Weyl with integral geometric methods to obtain an integral representation of the length, which we approximate using a variant of the Koksma-Hlawka Theorem. In a second step, we use tools from computational topology to decrease the dependence on small perturbations of the shape. We present computational experiments that shed light on the stability and the convergence rate of our algorithm.},
author = {Edelsbrunner, Herbert and Pausinger, Florian},
issn = {09249907},
journal = {Journal of Mathematical Imaging and Vision},
number = {1},
pages = {164 -- 177},
publisher = {Springer},
title = {{Stable length estimates of tube-like shapes}},
doi = {10.1007/s10851-013-0468-x},
volume = {50},
year = {2014},
}
@article{2257,
abstract = {Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such “K-pairwise” models—being systematic extensions of the previously used pairwise Ising models—provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.},
author = {Tkacik, Gasper and Marre, Olivier and Amodei, Dario and Schneidman, Elad and Bialek, William and Berry, Michael},
issn = {1553734X},
journal = {PLoS Computational Biology},
number = {1},
publisher = {Public Library of Science},
title = {{Searching for collective behavior in a large network of sensory neurons}},
doi = {10.1371/journal.pcbi.1003408},
volume = {10},
year = {2014},
}
@article{468,
abstract = {Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance) is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.},
author = {Cimadom, Arno and Ulloa, Angel and Meidl, Patrick and Zöttl, Markus and Zöttl, Elisabet and Fessl, Birgit and Nemeth, Erwin and Dvorak, Michael and Cunninghame, Francesca and Tebbich, Sabine},
journal = {PLoS One},
number = {9},
publisher = {Public Library of Science},
title = {{Invasive parasites habitat change and heavy rainfall reduce breeding success in Darwin's finches}},
doi = {10.1371/journal.pone.0107518},
volume = {9},
year = {2014},
}
@inproceedings{475,
abstract = {First cycle games (FCG) are played on a finite graph by two players who push a token along the edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some fixed property Y of the sequence of labels of the edges (or nodes) forming this cycle. These games are traditionally of interest because of their connection with infinite-duration games such as parity and mean-payoff games. We study the memory requirements for winning strategies of FCGs and certain associated infinite duration games. We exhibit a simple FCG that is not memoryless determined (this corrects a mistake in Memoryless determinacy of parity and mean payoff games: a simple proof by Bj⋯orklund, Sandberg, Vorobyov (2004) that claims that FCGs for which Y is closed under cyclic permutations are memoryless determined). We show that θ (n)! memory (where n is the number of nodes in the graph), which is always sufficient, may be necessary to win some FCGs. On the other hand, we identify easy to check conditions on Y (i.e., Y is closed under cyclic permutations, and both Y and its complement are closed under concatenation) that are sufficient to ensure that the corresponding FCGs and their associated infinite duration games are memoryless determined. We demonstrate that many games considered in the literature, such as mean-payoff, parity, energy, etc., satisfy these conditions. On the complexity side, we show (for efficiently computable Y) that while solving FCGs is in PSPACE, solving some families of FCGs is PSPACE-hard. },
author = {Aminof, Benjamin and Rubin, Sasha},
booktitle = {Electronic Proceedings in Theoretical Computer Science, EPTCS},
location = {Grenoble, France},
pages = {83 -- 90},
publisher = {Open Publishing Association},
title = {{First cycle games}},
doi = {10.4204/EPTCS.146.11},
volume = {146},
year = {2014},
}
@article{535,
abstract = {Energy games belong to a class of turn-based two-player infinite-duration games played on a weighted directed graph. It is one of the rare and intriguing combinatorial problems that lie in NP∩co-NP, but are not known to be in P. The existence of polynomial-time algorithms has been a major open problem for decades and apart from pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass in polynomial time. In this paper, we give several results based on the weight structures of the graph. First, we identify a notion of penalty and present a polynomial-time algorithm when the penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of weighted graphs. It includes several worst-case instances on which previous algorithms, such as value iteration and random facet algorithms, require at least sub-exponential time. Our main technique is developing the first non-trivial approximation algorithm and showing how to convert it to an exact algorithm. Moreover, we show that in a practical case in verification where weights are clustered around a constant number of values, the energy game problem can be solved in polynomial time. We also show that the problem is still as hard as in general when the clique-width is bounded or the graph is strongly ergodic, suggesting that restricting the graph structure does not necessarily help.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Krinninger, Sebastian and Nanongkai, Danupon},
journal = {Algorithmica},
number = {3},
pages = {457 -- 492},
publisher = {Springer},
title = {{Polynomial time algorithms for energy games with special weight structures}},
doi = {10.1007/s00453-013-9843-7},
volume = {70},
year = {2014},
}
@article{537,
abstract = {Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life-history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.},
author = {Prizak, Roshan and Ezard, Thomas and Hoyle, Rebecca},
journal = {Ecology and Evolution},
number = {15},
pages = {3139 -- 3145},
publisher = {Wiley-Blackwell},
title = {{Fitness consequences of maternal and grandmaternal effects}},
doi = {10.1002/ece3.1150},
volume = {4},
year = {2014},
}
@misc{5411,
abstract = {Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design process. Exploiting the compositional structure of system specifications can considerably reduce the effort in model-based testing. Moreover, inferring properties about the system from testing its individual components allows the designer to reduce the amount of integration testing.
In this paper, we study compositional properties of the IOCO-testing theory. We propose a new approach to composition and hiding operations, inspired by contract-based design and interface theories. These operations preserve behaviors that are compatible under composition and hiding, and prune away incompatible ones. The resulting specification characterizes the input sequences for which the unit testing of components is sufficient to infer the correctness of component integration without the need for further tests. We provide a methodology that uses these results to minimize integration testing effort, but also to detect potential weaknesses in specifications. While we focus on asynchronous models and the IOCO conformance relation, the resulting methodology can be applied to a broader class of systems.},
author = {Daca, Przemyslaw and Henzinger, Thomas A and Krenn, Willibald and Nickovic, Dejan},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{Compositional specifications for IOCO testing}},
doi = {10.15479/AT:IST-2014-148-v2-1},
year = {2014},
}
@misc{5412,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {31},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v1-1},
year = {2014},
}
@misc{5413,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v2-2},
year = {2014},
}
@misc{5414,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation.
We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v3-1},
year = {2014},
}
@misc{5415,
abstract = {Recently there has been a significant effort to add quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, several basic system properties such as average response time cannot be expressed with weighted automata. In this work, we introduce nested weighted automata as a new formalism for expressing important quantitative properties such as average response time. We establish an almost complete decidability picture for the basic decision problems for nested weighted automata, and illustrate its applicability in several domains. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2014-170-v1-1},
year = {2014},
}
@misc{5416,
abstract = {As hybrid systems involve continuous behaviors, they should be evaluated by quantitative methods, rather than qualitative methods. In this paper we adapt a quantitative framework, called model measuring, to the hybrid systems domain. The model-measuring problem asks, given a model M and a specification, what is the maximal distance such that all models within that distance from M satisfy (or violate) the specification. A distance function on models is given as part of the input of the problem. Distances, especially related to continuous behaviors are more natural in the hybrid case than the discrete case. We are interested in distances represented by monotonic hybrid automata, a hybrid counterpart of (discrete) weighted automata, whose recognized timed languages are monotone (w.r.t. inclusion) in the values of parameters.The contributions of this paper are twofold. First, we give sufficient conditions under which the model-measuring problem can be solved. Second, we discuss the modeling of distances and applications of the model-measuring problem.},
author = {Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Model measuring for hybrid systems}},
doi = {10.15479/AT:IST-2014-171-v1-1},
year = {2014},
}
@misc{5417,
abstract = {We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models M'within distance ρ from M satisfy (or violate)φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata.
The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification.
We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved.
We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging.
We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.},
author = {Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {14},
publisher = {IST Austria},
title = {{From model checking to model measuring}},
doi = {10.15479/AT:IST-2014-172-v1-1},
year = {2014},
}
@misc{5418,
abstract = {We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. Our results have tight connections with partial-observation stochastic games for which we derive new complexity results.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
issn = {2664-1690},
pages = {18},
publisher = {IST Austria},
title = {{Games with a weak adversary}},
doi = {10.15479/AT:IST-2014-176-v1-1},
year = {2014},
}
@misc{5419,
abstract = {We consider the reachability and shortest path problems on low tree-width graphs, with n nodes, m edges, and tree-width t, on a standard RAM with wordsize W. We use O to hide polynomial factors of the inverse of the Ackermann function. Our main contributions are three fold:
1. For reachability, we present an algorithm that requires O(n·t2·log(n/t)) preprocessing time, O(n·(t·log(n/t))/W) space, and O(t/W) time for pair queries and O((n·t)/W) time for single-source queries. Note that for constant t our algorithm uses O(n·logn) time for preprocessing; and O(n/W) time for single-source queries, which is faster than depth first search/breath first search (after the preprocessing).
2. We present an algorithm for shortest path that requires O(n·t2) preprocessing time, O(n·t) space, and O(t2) time for pair queries and O(n·t) time single-source queries.
3. We give a space versus query time trade-off algorithm for shortest path that, given any constant >0, requires O(n·t2) preprocessing time, O(n·t2) space, and O(n1−·t2) time for pair queries.
Our algorithms improve all existing results, and use very simple data structures.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {34},
publisher = {IST Austria},
title = {{Improved algorithms for reachability and shortest path on low tree-width graphs}},
doi = {10.15479/AT:IST-2014-187-v1-1},
year = {2014},
}
@misc{5420,
abstract = {We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy).},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
issn = {2664-1690},
pages = {49},
publisher = {IST Austria},
title = {{The value 1 problem for concurrent mean-payoff games}},
doi = {10.15479/AT:IST-2014-191-v1-1},
year = {2014},
}
@misc{5421,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are: (1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure). (2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{The complexity of evolution on graphs}},
doi = {10.15479/AT:IST-2014-190-v2-2},
year = {2014},
}
@techreport{5422,
abstract = {Notes from the Third Plenary for the Research Data Alliance in Dublin, Ireland on March 26 to 28, 2014 with focus on starting an institutional research data repository.},
author = {Porsche, Jana},
publisher = {none},
title = {{Notes from Research Data Alliance Plenary Meeting in Dublin, Ireland}},
year = {2014},
}
@misc{5423,
abstract = {We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm- deadline real-time tasks based on multi-objective graphs: Given a taskset and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. a clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including D(over), that have been proposed in the past, for various tasksets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are tasksets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application. },
author = {Chatterjee, Krishnendu and Kössler, Alexander and Pavlogiannis, Andreas and Schmid, Ulrich},
issn = {2664-1690},
pages = {14},
publisher = {IST Austria},
title = {{A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks}},
doi = {10.15479/AT:IST-2014-300-v1-1},
year = {2014},
}
@misc{5424,
abstract = {We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush},
issn = {2664-1690},
pages = {12},
publisher = {IST Austria},
title = {{Qualitative analysis of POMDPs with temporal logic specifications for robotics applications}},
doi = {10.15479/AT:IST-2014-305-v1-1},
year = {2014},
}
@misc{5425,
abstract = { We consider partially observable Markov decision processes (POMDPs) with a set of target states and every transition is associated with an integer cost. The optimization objective we study asks to minimize the expected total cost till the target set is reached, while ensuring that the target set is reached almost-surely (with probability 1). We show that for integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost and the bound is double exponential; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms developing on the existing algorithms for POMDPs with finite-horizon objectives. While the worst-case running time of our algorithm is double exponential, we also present efficient stopping criteria for the algorithm and show experimentally that it performs well in many examples of interest.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Optimal cost almost-sure reachability in POMDPs}},
year = {2014},
}
@misc{5426,
abstract = {We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush},
issn = {2664-1690},
pages = {10},
publisher = {IST Austria},
title = {{Qualitative analysis of POMDPs with temporal logic specifications for robotics applications}},
doi = {10.15479/AT:IST-2014-305-v2-1},
year = {2014},
}
@misc{5427,
abstract = {We consider graphs with n nodes together with their tree-decomposition that has b = O ( n ) bags and width t , on the standard RAM computational model with wordsize W = Θ (log n ) . Our contributions are two-fold: Our first contribution is an algorithm that given a graph and its tree-decomposition as input, computes a binary and balanced tree-decomposition of width at most 4 · t + 3 of the graph in O ( b ) time and space, improving a long-standing (from 1992) bound of O ( n · log n ) time for constant treewidth graphs. Our second contribution is on reachability queries for low treewidth graphs. We build on our tree-balancing algorithm and present a data-structure for graph reachability that requires O ( n · t 2 ) preprocessing time, O ( n · t ) space, and O ( d t/ log n e ) time for pair queries, and O ( n · t · log t/ log n ) time for single-source queries. For constant t our data-structure uses O ( n ) time for preprocessing, O (1) time for pair queries, and O ( n/ log n ) time for single-source queries. This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a constant number of single-source queries.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {24},
publisher = {IST Austria},
title = {{Optimal tree-decomposition balancing and reachability on low treewidth graphs}},
doi = {10.15479/AT:IST-2014-314-v1-1},
year = {2014},
}
@misc{5428,
abstract = {Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs; and (2) quantitative simulation, for simulation between weighted automata. Again, while fair trace inclusion is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quantitative) language inclusion problem is undecidable for mean-payoff automata and the decidability is open for discounted-sum automata, whereas the (quantitative) simulation reduce to mean-payoff games and discounted-sum games, which admit pseudo-polynomial time algorithms.
In this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e., we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi acceptance conditions on weighted automata changes many fundamental properties of the simulation games. For example, whereas for mean-payoff and discounted-sum games, the players do not need memory to play optimally; we show in contrast that for simulation games with Büchi acceptance conditions, (i) for mean-payoff objectives, optimal strategies for both players require infinite memory in general, and (ii) for discounted-sum objectives, optimal strategies need not exist for both players. While the simulation games with Büchi acceptance conditions are more complicated (e.g., due to infinite-memory requirements for mean-payoff objectives) as compared to their counterpart without Büchi acceptance conditions, we still present pseudo-polynomial time algorithms to solve simulation games with Büchi acceptance conditions for both weighted mean-payoff and weighted discounted-sum automata.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan and Velner, Yaron},
issn = {2664-1690},
pages = {26},
publisher = {IST Austria},
title = {{Quantitative fair simulation games}},
doi = {10.15479/AT:IST-2014-315-v1-1},
year = {2014},
}
@inbook{6178,
abstract = {Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.},
author = {Smutny, Michael and Behrndt, Martin and Campinho, Pedro and Ruprecht, Verena and Heisenberg, Carl-Philipp J},
booktitle = {Tissue Morphogenesis},
editor = {Nelson, Celeste},
isbn = {9781493911639},
issn = {1064-3745},
pages = {219--235},
publisher = {Springer},
title = {{UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo}},
doi = {10.1007/978-1-4939-1164-6_15},
volume = {1189},
year = {2014},
}
@book{6853,
abstract = {This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields.},
author = {Edelsbrunner, Herbert},
isbn = {9783319059563},
issn = {2191-530X},
pages = {IX, 110},
publisher = {Springer International Publishing},
title = {{A Short Course in Computational Geometry and Topology}},
doi = {10.1007/978-3-319-05957-0},
year = {2014},
}
@techreport{7038,
author = {Huszár, Kristóf and Rolinek, Michal},
pages = {5},
publisher = {IST Austria},
title = {{Playful Math - An introduction to mathematical games}},
year = {2014},
}
@article{1375,
abstract = {We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1) First we show that the algorithmic question is reducible to the problem of a logarithmic number of min-plus matrix multiplications of n×n-matrices, where n is the number of vertices of the graph. (2) Second, when the weights are nonnegative, we present the first (1+ε)-approximation algorithm for the problem and the running time of our algorithm is Õ(nωlog3(nW/ε)/ε),1 where O(nω) is the time required for the classic n×n-matrix multiplication and W is the maximum value of the weights. With an additional O(log(nW/ε)) factor in space a cycle with approximately optimal weight can be computed within the same time bound.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Krinninger, Sebastian and Loitzenbauer, Veronika and Raskin, Michael},
journal = {Theoretical Computer Science},
number = {C},
pages = {104 -- 116},
publisher = {Elsevier},
title = {{Approximating the minimum cycle mean}},
doi = {10.1016/j.tcs.2014.06.031},
volume = {547},
year = {2014},
}
@inproceedings{1392,
abstract = {Fault-tolerant distributed algorithms play an important role in ensuring the reliability of many software applications. In this paper we consider distributed algorithms whose computations are organized in rounds. To verify the correctness of such algorithms, we reason about (i) properties (such as invariants) of the state, (ii) the transitions controlled by the algorithm, and (iii) the communication graph. We introduce a logic that addresses these points, and contains set comprehensions with cardinality constraints, function symbols to describe the local states of each process, and a limited form of quantifier alternation to express the verification conditions. We show its use in automating the verification of consensus algorithms. In particular, we give a semi-decision procedure for the unsatisfiability problem of the logic and identify a decidable fragment. We successfully applied our framework to verify the correctness of a variety of consensus algorithms tolerant to both benign faults (message loss, process crashes) and value faults (message corruption).},
author = {Dragoi, Cezara and Henzinger, Thomas A and Veith, Helmut and Widder, Josef and Zufferey, Damien},
location = {San Diego, USA},
pages = {161 -- 181},
publisher = {Springer},
title = {{A logic-based framework for verifying consensus algorithms}},
doi = {10.1007/978-3-642-54013-4_10},
volume = {8318},
year = {2014},
}
@inproceedings{1393,
abstract = {Probabilistic programs are usual functional or imperative programs with two added constructs: (1) the ability to draw values at random from distributions, and (2) the ability to condition values of variables in a program via observations. Models from diverse application areas such as computer vision, coding theory, cryptographic protocols, biology and reliability analysis can be written as probabilistic programs. Probabilistic inference is the problem of computing an explicit representation of the probability distribution implicitly specified by a probabilistic program. Depending on the application, the desired output from inference may vary-we may want to estimate the expected value of some function f with respect to the distribution, or the mode of the distribution, or simply a set of samples drawn from the distribution. In this paper, we describe connections this research area called \Probabilistic Programming" has with programming languages and software engineering, and this includes language design, and the static and dynamic analysis of programs. We survey current state of the art and speculate on promising directions for future research.},
author = {Gordon, Andrew and Henzinger, Thomas A and Nori, Aditya and Rajamani, Sriram},
booktitle = {Proceedings of the on Future of Software Engineering},
location = {Hyderabad, India},
pages = {167 -- 181},
publisher = {ACM},
title = {{Probabilistic programming}},
doi = {10.1145/2593882.2593900},
year = {2014},
}
@phdthesis{1395,
abstract = {In this thesis I studied various individual and social immune defences employed by the invasive garden ant Lasius neglectus mostly against entomopathogenic fungi. The first two chapters of this thesis address the phenomenon of 'social immunisation'. Social immunisation, that is the immunological protection of group members due to social contact to a pathogen-exposed nestmate, has been described in various social insect species against different types of pathogens. However, in the case of entomopathogenic fungi it has, so far, only been demonstrated that social immunisation exists at all. Its underlying mechanisms r any other properties were, however, unknown. In the first chapter of this thesis I identified the mechanistic basis of social immunisation in L. neglectus against the entomopathogenous fungus Metarhizium. I could show that nestmates of a pathogen-exposed individual contract low-level infections due to social interactions. These low-level infections are, however, non-lethal and cause an active stimulation of the immune system, which protects the nestmates upon subsequent pathogen encounters. In the second chapter of this thesis I investigated the specificity and colony level effects of social immunisation. I demonstrated that the protection conferred by social immunisation is highly specific, protecting ants only against the same pathogen strain. In addition, depending on the respective context, social immunisation may even cause fitness costs. I further showed that social immunisation crucially affects sanitary behaviour and disease dynamics within ant groups. In the third chapter of this thesis I studied the effects of the ectosymbiotic fungus Laboulbenia formicarum on its host L. neglectus. Although Laboulbeniales are the largest order of insect-parasitic fungi, research concerning host fitness consequence is sparse. I showed that highly Laboulbenia-infected ants sustain fitness costs under resource limitation, however, gain fitness benefits when exposed to an entomopathogenus fungus. These effects are probably cause by a prophylactic upregulation of behavioural as well as physiological immune defences in highly infected ants.},
author = {Konrad, Matthias},
pages = {131},
publisher = {IST Austria},
title = {{Immune defences in ants: Effects of social immunisation and a fungal ectosymbiont in the ant Lasius neglectus}},
year = {2014},
}
@phdthesis{1402,
abstract = {Phosphatidylinositol (Ptdlns) is a structural phospholipid that can be phosphorylated into various lipid signaling molecules, designated polyphosphoinositides (PPIs). The reversible phosphorylation of PPIs on the 3, 4, or 5 position of inositol is performed by a set of organelle-specific kinases and phosphatases, and the characteristic head groups make these molecules ideal for regulating biological processes in time and space. In yeast and mammals, Ptdlns3P and Ptdlns(3,5)P2 play crucial roles in trafficking toward the lytic compartments, whereas the role in plants is not yet fully understood. Here we identified the role of a land plant-specific subgroup of PPI phosphatases, the suppressor of actin 2 (SAC2) to SAC5, during vauolar trafficking and morphogenesis in Arabidopsis thaliana. SAC2-SAC5 localize to the tonoplast along with Ptdlns3P, the presumable product of their activity. in SAC gain- and loss-of-function mutants, the levels of Ptdlns monophosphates and bisphosphates were changed, with opposite effects on the morphology of storage and lytic vacuoles, and the trafficking toward the vacuoles was defective. Moreover, multiple sac knockout mutants had an increased number of smaller storage and lytic vacuoles, whereas extralarge vacuoles were observed in the overexpression lines, correlating with various growth and developmental defects. The fragmented vacuolar phenotype of sac mutants could be mimicked by treating wild-type seedlings with Ptdlns(3,5)P2, corroborating that this PPI is important for vacuole morphology. Taken together, these results provide evidence that PPIs, together with their metabolic enzymes SAC2-SAC5, are crucial for vacuolar trafficking and for vacuolar morphology and function in plants.},
author = {Marhavá, Petra},
pages = {90},
publisher = {IST Austria},
title = {{Molecular mechanisms of patterning and subcellular trafficking in Arabidopsis thaliana}},
year = {2014},
}
@phdthesis{1403,
abstract = {A variety of developmental and disease related processes depend on epithelial cell sheet spreading. In order to gain insight into the biophysical mechanism(s) underlying the tissue morphogenesis we studied the spreading of an epithelium during the early development of the zebrafish embryo. In zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the yolk cell to completely engulf it at the end of gastrulation. Previous studies have proposed that an actomyosin ring forming within the yolk syncytial layer (YSL) acts as purse string that through constriction along its circumference pulls on the margin of the EVL. Direct biophysical evidence for this hypothesis has however been missing. The aim of the thesis was to understand how the actomyosin ring may generate pulling forces onto the EVL and what cellular mechanism(s) may facilitate the spreading of the epithelium. Using laser ablation to measure cortical tension within the actomyosin ring we found an anisotropic tension distribution, which was highest along the circumference of the ring. However the low degree of anisotropy was incompatible with the actomyosin ring functioning as a purse string only. Additionally, we observed retrograde cortical flow from vegetal parts of the ring into the EVL margin. Interpreting the experimental data using a theoretical distribution that models the tissues as active viscous gels led us to proposen that the actomyosin ring has a twofold contribution to EVL epiboly. It not only acts as a purse string through constriction along its circumference, but in addition constriction along the width of the ring generates pulling forces through friction-resisted cortical flow. Moreover, when rendering the purse string mechanism unproductive EVL epiboly proceeded normally indicating that the flow-friction mechanism is sufficient to drive the process. Aiming to understand what cellular mechanism(s) may facilitate the spreading of the epithelium we found that tension-oriented EVL cell divisions limit tissue anisotropy by releasing tension along the division axis and promote epithelial spreading. Notably, EVL cells undergo ectopic cell fusion in conditions in which oriented-cell division is impaired or the epithelium is mechanically challenged. Taken together our study of EVL epiboly suggests a novel mechanism of force generation for actomyosin rings through friction-resisted cortical flow and highlights the importance of tension-oriented cell divisions in epithelial morphogenesis.},
author = {Behrndt, Martin},
pages = {91},
publisher = {IST Austria},
title = {{Forces driving epithelial spreading in zebrafish epiboly}},
year = {2014},
}
@phdthesis{1404,
abstract = {The co-evolution of hosts and pathogens is characterized by continuous adaptations of both parties. Pathogens of social insects need to adapt towards disease defences at two levels: 1) individual immunity of each colony member consisting of behavioural defence strategies as well as humoral and cellular immune responses and 2) social immunity that is collectively performed by all group members comprising behavioural, physiological and organisational defence strategies.
To disentangle the selection pressure on pathogens by the collective versus individual level of disease defence in social insects, we performed an evolution experiment using the Argentine Ant, Linepithema humile, as a host and a mixture of the general insect pathogenic fungus Metarhizium spp. (6 strains) as a pathogen. We allowed pathogen evolution over 10 serial host passages to two different evolution host treatments: (1) only individual host immunity in a single host treatment, and (2) simultaneously acting individual and social immunity in a social host treatment, in which an exposed ant was accompanied by two untreated nestmates.
Before starting the pathogen evolution experiment, the 6 Metarhizium spp. strains were characterised concerning conidiospore size killing rates in singly and socially reared ants, their competitiveness under coinfecting conditions and their influence on ant behaviour. We analysed how the ancestral atrain mixture changed in conidiospere size, killing rate and strain composition dependent on host treatment (single or social hosts) during 10 passages and found that killing rate and conidiospere size of the pathogen increased under both evolution regimes, but different depending on host treatment.
Testing the evolved strain mixtures that evolved under either the single or social host treatment under both single and social current rearing conditions in a full factorial design experiment revealed that the additional collective defences in insect societies add new selection pressure for their coevolving pathogens that compromise their ability to adapt to its host at the group level. To our knowledge, this is the first study directly measuring the influence of social immunity on pathogen evolution.},
author = {Stock, Miriam},
pages = {101},
publisher = {IST Austria},
title = {{Evolution of a fungal pathogen towards individual versus social immunity in ants}},
year = {2014},
}
@inproceedings{1507,
abstract = {The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large real and complex Hermitian matrices with independent, identically distributed entries are universal in a sense that they depend only on the symmetry class of the matrix and otherwise are independent of the details of the distribution. We present the recent solution to this half-century old conjecture. We explain how stochastic tools, such as the Dyson Brownian motion, and PDE ideas, such as De Giorgi-Nash-Moser regularity theory, were combined in the solution. We also show related results for log-gases that represent a universal model for strongly correlated systems. Finally, in the spirit of Wigner’s original vision, we discuss the extensions of these universality results to more realistic physical systems such as random band matrices.},
author = {Erdös, László},
location = {Seoul, Korea},
pages = {214 -- 236},
publisher = {Kyung Moon SA Co. Ltd.},
title = {{Random matrices, log-gases and Hölder regularity}},
volume = {3},
year = {2014},
}
@inproceedings{1516,
abstract = {We present a rigorous derivation of the BCS gap equation for superfluid fermionic gases with point interactions. Our starting point is the BCS energy functional, whose minimizer we investigate in the limit when the range of the interaction potential goes to zero.
},
author = {Bräunlich, Gerhard and Hainzl, Christian and Seiringer, Robert},
booktitle = {Proceedings of the QMath12 Conference},
location = {Berlin, Germany},
pages = {127 -- 137},
publisher = {World Scientific Publishing},
title = {{On the BCS gap equation for superfluid fermionic gases}},
doi = {10.1142/9789814618144_0007},
year = {2014},
}
@article{1532,
abstract = {Ammonium is the major nitrogen source in some plant ecosystems but is toxic at high concentrations, especially when available as the exclusive nitrogen source. Ammonium stress rapidly leads to various metabolic and hormonal imbalances that ultimately inhibit root and shoot growth in many plant species, including Arabidopsis thaliana (L.) Heynh. To identify molecular and genetic factors involved in seedling survival with prolonged exclusive NH4+ nutrition, a transcriptomic analysis with microarrays was used. Substantial transcriptional differences were most pronounced in (NH4)2SO4-grown seedlings, compared with plants grown on KNO3 or NH4NO3. Consistent with previous physiological analyses, major differences in the expression modules of photosynthesis-related genes, an altered mitochondrial metabolism, differential expression of the primary NH4+ assimilation, alteration of transporter gene expression and crucial changes in cell wall biosynthesis were found. A major difference in plant hormone responses, particularly of auxin but not cytokinin, was striking. The activity of the DR5::GUS reporter revealed a dramatically decreased auxin response in (NH4)2SO4-grown primary roots. The impaired root growth on (NH4)2SO4 was partially rescued by exogenous auxin or in specific mutants in the auxin pathway. The data suggest that NH4+-induced nutritional and metabolic imbalances can be partially overcome by elevated auxin levels.},
author = {Yang, Huaiyu and Von Der Fecht Bartenbach, Jenny and Friml, Jirí and Lohmann, Jan and Neuhäuser, Benjamin and Ludewig, Uwe},
journal = {Functional Plant Biology},
number = {3},
pages = {239 -- 251},
publisher = {CSIRO},
title = {{Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source}},
doi = {10.1071/FP14171},
volume = {42},
year = {2014},
}
@article{1629,
abstract = {We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations.},
author = {Guerrero, Paul and Jeschke, Stefan and Wimmer, Michael and Wonka, Peter},
journal = {ACM Transactions on Graphics},
number = {2},
publisher = {ACM},
title = {{Edit propagation using geometric relationship functions}},
doi = {10.1145/2591010},
volume = {33},
year = {2014},
}
@inproceedings{1643,
abstract = {We extend the notion of verifiable random functions (VRF) to constrained VRFs, which generalize the concept of constrained pseudorandom functions, put forward by Boneh and Waters (Asiacrypt’13), and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14), who call them delegatable PRFs and functional PRFs, respectively. In a standard VRF the secret key sk allows one to evaluate a pseudorandom function at any point of its domain; in addition, it enables computation of a non-interactive proof that the function value was computed correctly. In a constrained VRF from the key sk one can derive constrained keys skS for subsets S of the domain, which allow computation of function values and proofs only at points in S. After formally defining constrained VRFs, we derive instantiations from the multilinear-maps-based constrained PRFs by Boneh and Waters, yielding a VRF with constrained keys for any set that can be decided by a polynomial-size circuit. Our VRFs have the same function values as the Boneh-Waters PRFs and are proved secure under the same hardness assumption, showing that verifiability comes at no cost. Constrained (functional) VRFs were stated as an open problem by Boyle et al.},
author = {Fuchsbauer, Georg},
booktitle = {SCN 2014},
editor = {Abdalla, Michel and De Prisco, Roberto},
location = {Amalfi, Italy},
pages = {95 -- 114},
publisher = {Springer},
title = {{Constrained Verifiable Random Functions }},
doi = {10.1007/978-3-319-10879-7_7},
volume = {8642},
year = {2014},
}
@article{3263,
abstract = {Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.},
author = {Tkacik, Gasper and Ghosh, Anandamohan and Schneidman, Elad and Segev, Ronen},
journal = {PLoS One},
number = {1},
publisher = {Public Library of Science},
title = {{Adaptation to changes in higher-order stimulus statistics in the salamander retina}},
doi = {10.1371/journal.pone.0085841},
volume = {9},
year = {2014},
}