@inproceedings{2216,
abstract = {The edit distance between two (untimed) traces is the minimum cost of a sequence of edit operations (insertion, deletion, or substitution) needed to transform one trace to the other. Edit distances have been extensively studied in the untimed setting, and form the basis for approximate matching of sequences in different domains such as coding theory, parsing, and speech recognition. In this paper, we lift the study of edit distances from untimed languages to the timed setting. We define an edit distance between timed words which incorporates both the edit distance between the untimed words and the absolute difference in time stamps. Our edit distance between two timed words is computable in polynomial time. Further, we show that the edit distance between a timed word and a timed language generated by a timed automaton, defined as the edit distance between the word and the closest word in the language, is PSPACE-complete. While computing the edit distance between two timed automata is undecidable, we show that the approximate version, where we decide if the edit distance between two timed automata is either less than a given parameter or more than δ away from the parameter, for δ > 0, can be solved in exponential space and is EXPSPACE-hard. Our definitions and techniques can be generalized to the setting of hybrid systems, and analogous decidability results hold for rectangular automata.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Majumdar, Ritankar},
location = {Berlin, Germany},
pages = {303 -- 312},
publisher = {Springer},
title = {{Edit distance for timed automata}},
doi = {10.1145/2562059.2562141},
year = {2014},
}
@inproceedings{2217,
abstract = {As hybrid systems involve continuous behaviors, they should be evaluated by quantitative methods, rather than qualitative methods. In this paper we adapt a quantitative framework, called model measuring, to the hybrid systems domain. The model-measuring problem asks, given a model M and a specification, what is the maximal distance such that all models within that distance from M satisfy (or violate) the specification. A distance function on models is given as part of the input of the problem. Distances, especially related to continuous behaviors are more natural in the hybrid case than the discrete case. We are interested in distances represented by monotonic hybrid automata, a hybrid counterpart of (discrete) weighted automata, whose recognized timed languages are monotone (w.r.t. inclusion) in the values of parameters.
The contributions of this paper are twofold. First, we give sufficient conditions under which the model-measuring problem can be solved. Second, we discuss the modeling of distances and applications of the model-measuring problem.},
author = {Henzinger, Thomas A and Otop, Jan},
booktitle = {Proceedings of the 17th international conference on Hybrid systems: computation and control},
location = {Berlin, Germany},
pages = {213 -- 222},
publisher = {Springer},
title = {{Model measuring for hybrid systems}},
doi = {10.1145/2562059.2562130},
year = {2014},
}
@inproceedings{2219,
abstract = {Recently, Döttling et al. (ASIACRYPT 2012) proposed the first chosen-ciphertext (IND-CCA) secure public-key encryption scheme from the learning parity with noise (LPN) assumption. In this work we give an alternative scheme which is conceptually simpler and more efficient. At the core of our construction is a trapdoor technique originally proposed for lattices by Micciancio and Peikert (EUROCRYPT 2012), which we adapt to the LPN setting. The main technical tool is a new double-trapdoor mechanism, together with a trapdoor switching lemma based on a computational variant of the leftover hash lemma.},
author = {Kiltz, Eike and Masny, Daniel and Pietrzak, Krzysztof Z},
isbn = {978-364254630-3},
pages = {1 -- 18},
publisher = {Springer},
title = {{Simple chosen-ciphertext security from low noise LPN}},
doi = {10.1007/978-3-642-54631-0_1},
volume = {8383},
year = {2014},
}
@article{2220,
abstract = {In this issue of Chemistry & Biology, Cokol and colleagues report a systematic study of drug interactions between antifungal compounds. Suppressive drug interactions occur more frequently than previously realized and come in different flavors with interesting implications.},
author = {De Vos, Marjon and Bollenbach, Mark Tobias},
issn = {10745521},
journal = {Chemistry and Biology},
number = {4},
pages = {439 -- 440},
publisher = {Cell Press},
title = {{Suppressive drug interactions between antifungals}},
doi = {10.1016/j.chembiol.2014.04.004},
volume = {21},
year = {2014},
}
@article{2222,
abstract = {Leaf venation develops complex patterns in angiosperms, but the mechanism underlying this process is largely unknown. To elucidate the molecular mechanisms governing vein pattern formation, we previously isolated vascular network defective (van) mutants that displayed venation discontinuities. Here, we report the phenotypic analysis of van4 mutants, and we identify and characterize the VAN4 gene. Detailed phenotypic analysis shows that van4 mutants are defective in procambium cell differentiation and subsequent vascular cell differentiation. Reduced shoot and root cell growth is observed in van4 mutants, suggesting that VAN4 function is important for cell growth and the establishment of venation continuity. Consistent with these phenotypes, the VAN4 gene is strongly expressed in vascular and meristematic cells. VAN4 encodes a putative TRS120, which is a known guanine nucleotide exchange factor (GEF) for Rab GTPase involved in regulating vesicle transport, and a known tethering factor that determines the specificity of membrane fusion. VAN4 protein localizes at the trans-Golgi network/early endosome (TGN/EE). Aberrant recycling of the auxin efflux carrier PIN proteins is observed in van4 mutants. These results suggest that VAN4-mediated exocytosis at the TGN plays important roles in plant vascular development and cell growth in shoot and root. Our identification of VAN4 as a putative TRS120 shows that Rab GTPases are crucial (in addition to ARF GTPases) for continuous vascular development, and provides further evidence for the importance of vesicle transport in leaf vascular formation.},
author = {Naramoto, Satoshi and Nodzyński, Tomasz and Dainobu, Tomoko and Takatsuka, Hirotomo and Okada, Teruyo and Friml, Jirí and Fukuda, Hiroo},
issn = {00320781},
journal = {Plant and Cell Physiology},
number = {4},
pages = {750 -- 763},
publisher = {Oxford University Press},
title = {{VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in arabidopsis}},
doi = {10.1093/pcp/pcu012},
volume = {55},
year = {2014},
}
@article{2223,
abstract = {Correct positioning of membrane proteins is an essential process in eukaryotic organisms. The plant hormone auxin is distributed through intercellular transport and triggers various cellular responses. Auxin transporters of the PIN-FORMED (PIN) family localize asymmetrically at the plasma membrane (PM) and mediate the directional transport of auxin between cells. A fungal toxin, brefeldin A (BFA), inhibits a subset of guanine nucleotide exchange factors for ADP-ribosylation factor small GTPases (ARF GEFs) including GNOM, which plays a major role in localization of PIN1 predominantly to the basal side of the PM. The Arabidopsis genome encodes 19 ARF-related putative GTPases. However, ARF components involved in PIN1 localization have been genetically poorly defined. Using a fluorescence imaging-based forward genetic approach, we identified an Arabidopsis mutant, bfa-visualized exocytic trafficking defective1 (bex1), in which PM localization of PIN1-green fluorescent protein (GFP) as well as development is hypersensitive to BFA. We found that in bex1 a member of the ARF1 gene family, ARF1A1C, was mutated. ARF1A1C localizes to the trans-Golgi network/early endosome and Golgi apparatus, acts synergistically to BEN1/MIN7 ARF GEF and is important for PIN recycling to the PM. Consistent with the developmental importance of PIN proteins, functional interference with ARF1 resulted in an impaired auxin response gradient and various developmental defects including embryonic patterning defects and growth arrest. Our results show that ARF1A1C is essential for recycling of PIN auxin transporters and for various auxin-dependent developmental processes.},
author = {Tanaka, Hirokazu and Nodzyński, Tomasz and Kitakura, Saeko and Feraru, Mugurel and Sasabe, Michiko and Ishikawa, Tomomi and Kleine Vehn, Jürgen and Kakimoto, Tatsuo and Friml, Jirí},
issn = {00320781},
journal = {Plant and Cell Physiology},
number = {4},
pages = {737 -- 749},
publisher = {Oxford University Press},
title = {{BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin transporters and auxin-mediated development in arabidopsis}},
doi = {10.1093/pcp/pct196},
volume = {55},
year = {2014},
}
@article{2224,
abstract = {This work investigates the transition between different traveling helical waves (spirals, SPIs) in the setup of differentially independent rotating cylinders. We use direct numerical simulations to consider an infinite long and periodic Taylor-Couette apparatus with fixed axial periodicity length. We find so-called mixed-cross-spirals (MCSs), that can be seen as nonlinear superpositions of SPIs, to establish stable footbridges connecting SPI states. While bridging the bifurcation branches of SPIs, the corresponding contributions within the MCS vary continuously with the control parameters. Here discussed MCSs presenting footbridge solutions start and end in different SPI branches. Therefore they differ significantly from the already known MCSs that present bypass solutions (Altmeyer and Hoffmann 2010 New J. Phys. 12 113035). The latter start and end in the same SPI branch, while they always bifurcate out of those SPI branches with the larger mode amplitude. Meanwhile, these only appear within the coexisting region of both SPIs. In contrast, the footbridge solutions can also bifurcate out of the minor SPI contribution. We also find they exist in regions where only one of the SPIs contributions exists. In addition, MCS as footbridge solution can appear either stable or unstable. The latter detected transient solutions offer similar spatio-temporal characteristics to the flow establishing stable footbridges. Such transition processes are interesting for pattern-forming systems in general because they accomplish transitions between traveling waves of different azimuthal wave numbers and have not been described in the literature yet.},
author = {Altmeyer, Sebastian},
issn = {01695983},
journal = {Fluid Dynamics Research},
number = {2},
publisher = {IOP Publishing Ltd.},
title = {{On secondary instabilities generating footbridges between spiral vortex flow}},
doi = {10.1088/0169-5983/46/2/025503},
volume = {46},
year = {2014},
}
@article{2225,
abstract = {We consider sample covariance matrices of the form X∗X, where X is an M×N matrix with independent random entries. We prove the isotropic local Marchenko-Pastur law, i.e. we prove that the resolvent (X∗X−z)−1 converges to a multiple of the identity in the sense of quadratic forms. More precisely, we establish sharp high-probability bounds on the quantity ⟨v,(X∗X−z)−1w⟩−⟨v,w⟩m(z), where m is the Stieltjes transform of the Marchenko-Pastur law and v,w∈CN. We require the logarithms of the dimensions M and N to be comparable. Our result holds down to scales Iz≥N−1+ε and throughout the entire spectrum away from 0. We also prove analogous results for generalized Wigner matrices.
},
author = {Bloemendal, Alex and Erdös, László and Knowles, Antti and Yau, Horng and Yin, Jun},
issn = {10836489},
journal = {Electronic Journal of Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Isotropic local laws for sample covariance and generalized Wigner matrices}},
doi = {10.1214/EJP.v19-3054},
volume = {19},
year = {2014},
}
@article{2226,
abstract = {Coriolis force effects on shear flows are important in geophysical and astrophysical contexts. We report a study on the linear stability and the transient energy growth of the plane Couette flow with system rotation perpendicular to the shear direction. External rotation causes linear instability. At small rotation rates, the onset of linear instability scales inversely with the rotation rate and the optimal transient growth in the linearly stable region is slightly enhanced ∼Re2. The corresponding optimal initial perturbations are characterized by roll structures inclined in the streamwise direction and are twisted under external rotation. At large rotation rates, the transient growth is significantly inhibited and hence linear stability analysis is a reliable indicator for instability.},
author = {Shi, Liang and Hof, Björn and Tilgner, Andreas},
issn = {15393755},
journal = {Physical Review E Statistical Nonlinear and Soft Matter Physics},
number = {1},
publisher = {American Institute of Physics},
title = {{Transient growth of Ekman-Couette flow}},
doi = {10.1103/PhysRevE.89.013001},
volume = {89},
year = {2014},
}
@article{2227,
abstract = {The Balkan Peninsula, characterized by high rates of endemism, is recognised as one of the most diverse and species-rich areas of Europe. However, little is known about the origin of Balkan endemics. The present study addresses the phylogenetic position of the Balkan endemic Ranunculus wettsteinii, as well as its taxonomic status and relationship with the widespread R. parnassiifolius, based on nuclear DNA (internal transcribed spacer, ITS) and plastid regions (rpl32-trnL, rps16-trnQ, trnK-matK and ycf6-psbM). Maximum parsimony and Bayesian inference analyses revealed a well-supported clade formed by accessions of R. wettsteinii. Furthermore, our phylogenetic and network analyses supported previous hypotheses of a likely allopolyploid origin for R. wettsteinii between R. montenegrinus and R. parnassiifolius, with the latter as the maternal parent.},
author = {Cires Rodriguez, Eduardo and Baltisberger, Matthias and Cuesta, Candela and Vargas, Pablo and Prieto, José},
issn = {14396092},
journal = {Organisms Diversity and Evolution},
number = {1},
pages = {1 -- 10},
publisher = {Springer},
title = {{Allopolyploid origin of the Balkan endemic Ranunculus wettsteinii (Ranunculaceae) inferred from nuclear and plastid DNA sequences}},
doi = {10.1007/s13127-013-0150-6},
volume = {14},
year = {2014},
}
@article{2228,
abstract = {Fast-spiking, parvalbumin-expressing GABAergic interneurons, a large proportion of which are basket cells (BCs), have a key role in feedforward and feedback inhibition, gamma oscillations and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. We examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ∼20 μm from the soma and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na^+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block revealed that low axonal Na^+ conductance density was sufficient for reliability, but high Na^+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na^+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing.},
author = {Hu, Hua and Jonas, Peter M},
issn = {10976256},
journal = {Nature Neuroscience},
number = {5},
pages = {686--693},
publisher = {Nature Publishing Group},
title = {{A supercritical density of Na^+ channels ensures fast signaling in GABAergic interneuron axons}},
doi = {10.1038/nn.3678},
volume = {17},
year = {2014},
}
@article{2229,
abstract = {The distance between Ca^2+ channels and release sensors determines the speed and efficacy of synaptic transmission. Tight "nanodomain" channel-sensor coupling initiates transmitter release at synapses in the mature brain, whereas loose "microdomain" coupling appears restricted to early developmental stages. To probe the coupling configuration at a plastic synapse in the mature central nervous system, we performed paired recordings between mossy fiber terminals and CA3 pyramidal neurons in rat hippocampus. Millimolar concentrations of both the fast Ca^2+ chelator BAPTA [1,2-bis(2-aminophenoxy)ethane- N,N, N′,N′-tetraacetic acid] and the slow chelator EGTA efficiently suppressed transmitter release, indicating loose coupling between Ca^2+ channels and release sensors. Loose coupling enabled the control of initial release probability by fast endogenous Ca^2+ buffers and the generation of facilitation by buffer saturation. Thus, loose coupling provides the molecular framework for presynaptic plasticity.},
author = {Vyleta, Nicholas and Jonas, Peter M},
issn = {00368075},
journal = {Science},
number = {6171},
pages = {665 -- 670},
publisher = {American Association for the Advancement of Science},
title = {{Loose coupling between Ca^2+ channels and release sensors at a plastic hippocampal synapse}},
doi = {10.1126/science.1244811},
volume = {343},
year = {2014},
}
@article{2230,
abstract = {Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals.},
author = {Guzmán, José and Schlögl, Alois and Schmidt Hieber, Christoph},
issn = {16625196},
journal = {Frontiers in Neuroinformatics},
number = {FEB},
publisher = {Frontiers Research Foundation},
title = {{Stimfit: Quantifying electrophysiological data with Python}},
doi = {10.3389/fninf.2014.00016},
volume = {8},
year = {2014},
}
@article{2231,
abstract = {Based on the measurements of noise in gene expression performed during the past decade, it has become customary to think of gene regulation in terms of a two-state model, where the promoter of a gene can stochastically switch between an ON and an OFF state. As experiments are becoming increasingly precise and the deviations from the two-state model start to be observable, we ask about the experimental signatures of complex multistate promoters, as well as the functional consequences of this additional complexity. In detail, we i), extend the calculations for noise in gene expression to promoters described by state transition diagrams with multiple states, ii), systematically compute the experimentally accessible noise characteristics for these complex promoters, and iii), use information theory to evaluate the channel capacities of complex promoter architectures and compare them with the baseline provided by the two-state model. We find that adding internal states to the promoter generically decreases channel capacity, except in certain cases, three of which (cooperativity, dual-role regulation, promoter cycling) we analyze in detail.},
author = {Rieckh, Georg and Tkacik, Gasper},
issn = {00063495},
journal = {Biophysical Journal},
number = {5},
pages = {1194 -- 1204},
publisher = {Biophysical Society},
title = {{Noise and information transmission in promoters with multiple internal states}},
doi = {10.1016/j.bpj.2014.01.014},
volume = {106},
year = {2014},
}
@article{2232,
abstract = {The purpose of this contribution is to summarize and discuss recent advances regarding the onset of turbulence in shear flows. The absence of a clear-cut instability mechanism, the spatio-temporal intermittent character and extremely long lived transients are some of the major difficulties encountered in these flows and have hindered progress towards understanding the transition process. We will show for the case of pipe flow that concepts from nonlinear dynamics and statistical physics can help to explain the onset of turbulence. In particular, the turbulent structures (puffs) observed close to onset are spatially localized chaotic transients and their lifetimes increase super-exponentially with Reynolds number. At the same time fluctuations of individual turbulent puffs can (although very rarely) lead to the nucleation of new puffs. The competition between these two stochastic processes gives rise to a non-equilibrium phase transition where turbulence changes from a super-transient to a sustained state.},
author = {Song, Baofang and Hof, Björn},
issn = {17425468},
journal = {Journal of Statistical Mechanics Theory and Experiment},
number = {2},
publisher = {IOP Publishing Ltd.},
title = {{Deterministic and stochastic aspects of the transition to turbulence}},
doi = {10.1088/1742-5468/2014/02/P02001},
volume = {2014},
year = {2014},
}
@article{2233,
abstract = { A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, valuing a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by λi, where the discount factor λ is a fixed rational number greater than 1. The value of a word is the minimal value of the automaton runs on it. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, reflecting the assumption that earlier weights are more important than later weights. Unfortunately, determinization of NDAs, which is often essential in formal verification, is, in general, not possible. We provide positive news, showing that every NDA with an integral discount factor is determinizable. We complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: for every nonintegral rational discount factor λ, there is a nondeterminizable λ-NDA. We also prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. For general NDAs, we look into approximate determinization, which is always possible as the influence of a word's suffix decays. We show that the naive approach, of unfolding the automaton computations up to a sufficient level, is doubly exponential in the discount factor. We provide an alternative construction for approximate determinization, which is singly exponential in the discount factor, in the precision, and in the number of states. We also prove matching lower bounds, showing that the exponential dependency on each of these three parameters cannot be avoided. All our results hold equally for automata over finite words and for automata over infinite words. },
author = {Boker, Udi and Henzinger, Thomas A},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {1},
publisher = {International Federation of Computational Logic},
title = {{Exact and approximate determinization of discounted-sum automata}},
doi = {10.2168/LMCS-10(1:10)2014},
volume = {10},
year = {2014},
}
@article{2234,
abstract = {We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with κ limit-average functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the case of one limit-average function, both randomization and memory are necessary for strategies even for ε-approximation, and that finite-memory randomized strategies are sufficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to the case of one limit-average function, infinite memory is necessary for strategies achieving a specific value (i.e. randomized finite-memory strategies are not sufficient), whereas memoryless randomized strategies are sufficient for ε-approximation, for all ε > 0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be ε-approximated in time polynomial in the size of the MDP and 1/ε, and exponential in the number of limit-average functions, for all ε > 0. Our analysis also reveals flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, corrects the flaws, and allows us to obtain improved results.},
author = {Brázdil, Tomáš and Brožek, Václav and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {1},
publisher = {International Federation of Computational Logic},
title = {{Markov decision processes with multiple long-run average objectives}},
doi = {10.2168/LMCS-10(1:13)2014},
volume = {10},
year = {2014},
}
@article{2235,
abstract = {Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.},
author = {Fürst, Matthias and Mcmahon, Dino and Osborne, Juliet and Paxton, Robert and Brown, Mark},
issn = {00280836},
journal = {Nature},
number = {7488},
pages = {364 -- 366},
publisher = {Nature Publishing Group},
title = {{Disease associations between honeybees and bumblebees as a threat to wild pollinators}},
doi = {10.1038/nature12977},
volume = {506},
year = {2014},
}
@inproceedings{2236,
abstract = {Consider a joint distribution (X,A) on a set. We show that for any family of distinguishers, there exists a simulator such that 1 no function in can distinguish (X,A) from (X,h(X)) with advantage ε, 2 h is only O(2 3ℓ ε -2) times less efficient than the functions in. For the most interesting settings of the parameters (in particular, the cryptographic case where X has superlogarithmic min-entropy, ε > 0 is negligible and consists of circuits of polynomial size), we can make the simulator h deterministic. As an illustrative application of our theorem, we give a new security proof for the leakage-resilient stream-cipher from Eurocrypt'09. Our proof is simpler and quantitatively much better than the original proof using the dense model theorem, giving meaningful security guarantees if instantiated with a standard blockcipher like AES. Subsequent to this work, Chung, Lui and Pass gave an interactive variant of our main theorem, and used it to investigate weak notions of Zero-Knowledge. Vadhan and Zheng give a more constructive version of our theorem using their new uniform min-max theorem.},
author = {Jetchev, Dimitar and Pietrzak, Krzysztof Z},
editor = {Lindell, Yehuda},
isbn = {978-364254241-1},
location = {San Diego, USA},
pages = {566 -- 590},
publisher = {Springer},
title = {{How to fake auxiliary input}},
doi = {10.1007/978-3-642-54242-8_24},
volume = {8349},
year = {2014},
}
@inproceedings{2239,
abstract = {The analysis of the energy consumption of software is an important goal for quantitative formal methods. Current methods, using weighted transition systems or energy games, model the energy source as an ideal resource whose status is characterized by one number, namely the amount of remaining energy. Real batteries, however, exhibit behaviors that can deviate substantially from an ideal energy resource. Based on a discretization of a standard continuous battery model, we introduce battery transition systems. In this model, a battery is viewed as consisting of two parts-the available-charge tank and the bound-charge tank. Any charge or discharge is applied to the available-charge tank. Over time, the energy from each tank diffuses to the other tank. Battery transition systems are infinite state systems that, being not well-structured, fall into no decidable class that is known to us. Nonetheless, we are able to prove that the !-regular modelchecking problem is decidable for battery transition systems. We also present a case study on the verification of control programs for energy-constrained semi-autonomous robots.},
author = {Boker, Udi and Henzinger, Thomas A and Radhakrishna, Arjun},
isbn = {978-145032544-8},
location = {San Diego, USA},
number = {1},
pages = {595 -- 606},
publisher = {ACM},
title = {{Battery transition systems}},
doi = {10.1145/2535838.2535875},
volume = {49},
year = {2014},
}
@article{2240,
abstract = {Clathrin-mediated endocytosis is the major mechanism for eukaryotic plasma membrane-based proteome turn-over. In plants, clathrin-mediated endocytosis is essential for physiology and development, but the identification and organization of the machinery operating this process remains largely obscure. Here, we identified an eight-core-component protein complex, the TPLATE complex, essential for plant growth via its role as major adaptor module for clathrin-mediated endocytosis. This complex consists of evolutionarily unique proteins that associate closely with core endocytic elements. The TPLATE complex is recruited as dynamic foci at the plasma membrane preceding recruitment of adaptor protein complex 2, clathrin, and dynamin-related proteins. Reduced function of different complex components severely impaired internalization of assorted endocytic cargoes, demonstrating its pivotal role in clathrin-mediated endocytosis. Taken together, the TPLATE complex is an early endocytic module representing a unique evolutionary plant adaptation of the canonical eukaryotic pathway for clathrin-mediated endocytosis.},
author = {Gadeyne, Astrid and Sánchez Rodríguez, Clara and Vanneste, Steffen and Di Rubbo, Simone and Zauber, Henrik and Vanneste, Kevin and Van Leene, Jelle and De Winne, Nancy and Eeckhout, Dominique and Persiau, Geert and Van De Slijke, Eveline and Cannoot, Bernard and Vercruysse, Leen and Mayers, Jonathan and Adamowski, Maciek and Kania, Urszula and Ehrlich, Matthias and Schweighofer, Alois and Ketelaar, Tijs and Maere, Steven and Bednarek, Sebastian and Friml, Jirí and Gevaert, Kris and Witters, Erwin and Russinova, Eugenia and Persson, Staffan and De Jaeger, Geert and Van Damme, Daniël},
issn = {00928674},
journal = {Cell},
number = {4},
pages = {691 -- 704},
publisher = {Cell Press},
title = {{The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants}},
doi = {10.1016/j.cell.2014.01.039},
volume = {156},
year = {2014},
}
@article{2241,
abstract = {The brain demands high-energy supply and obstruction of blood flow causes rapid deterioration of the healthiness of brain cells. Two major events occur upon ischemia: acidosis and liberation of excess glutamate, which leads to excitotoxicity. However, cellular source of glutamate and its release mechanism upon ischemia remained unknown. Here we show a causal relationship between glial acidosis and neuronal excitotoxicity. As the major cation that flows through channelrhodopsin-2 (ChR2) is proton, this could be regarded as an optogenetic tool for instant intracellular acidification. Optical activation of ChR2 expressed in glial cells led to glial acidification and to release of glutamate. On the other hand, glial alkalization via optogenetic activation of a proton pump, archaerhodopsin (ArchT), led to cessation of glutamate release and to the relief of ischemic brain damage in vivo. Our results suggest that controlling glial pH may be an effective therapeutic strategy for intervention of ischemic brain damage.},
author = {Beppu, Kaoru and Sasaki, Takuya and Tanaka, Kenji and Yamanaka, Akihiro and Fukazawa, Yugo and Shigemoto, Ryuichi and Matsui, Ko},
issn = {08966273},
journal = {Neuron},
number = {2},
pages = {314 -- 320},
publisher = {Elsevier},
title = {{Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage}},
doi = {10.1016/j.neuron.2013.11.011},
volume = {81},
year = {2014},
}
@article{2242,
abstract = {MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. Using deep sequencing and Northern blotting, we characterized miRNA expression in wild type and miR-155-deficient dendritic cells (DCs) and macrophages. Analysis of different stimuli (LPS, LDL, eLDL, oxLDL) reveals a direct influence of miR-155 on the expression levels of other miRNAs. For example, miR-455 is negatively regulated in miR-155-deficient cells possibly due to inhibition of the transcription factor C/EBPbeta by miR-155. Based on our comprehensive data sets, we propose a model of hierarchical miRNA expression dominated by miR-155 in DCs and macrophages.},
author = {Dueck, Anne and Eichner, Alexander and Sixt, Michael K and Meister, Gunter},
issn = {00145793},
journal = {FEBS Letters},
number = {4},
pages = {632 -- 640},
publisher = {Elsevier},
title = {{A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation}},
doi = {10.1016/j.febslet.2014.01.009},
volume = {588},
year = {2014},
}
@inbook{2245,
abstract = {Exogenous application of biologically important molecules for plant growth promotion and/or regulation is very common both in plant research and horticulture. Plant hormones such as auxins and cytokinins are classes of compounds which are often applied exogenously. Nevertheless, plants possess a well-established machinery to regulate the active pool of exogenously applied compounds by converting them to metabolites and conjugates. Consequently, it is often very useful to know the in vivo status of applied compounds to connect them with some of the regulatory events in plant developmental processes. The in vivo status of applied compounds can be measured by incubating plants with radiolabeled compounds, followed by extraction, purification, and HPLC metabolic profiling of plant extracts. Recently we have used this method to characterize the intracellularly localized PIN protein, PIN5. Here we explain the method in detail, with a focus on general application. },
author = {Simon, Sibu and Skůpa, Petr and Dobrev, Petre and Petrášek, Jan and Zažímalová, Eva and Friml, Jirí},
booktitle = {Plant Chemical Genomics},
editor = {Hicks, Glenn and Robert, Stéphanie},
issn = {10643745},
pages = {255 -- 264},
publisher = {Springer},
title = {{Analyzing the in vivo status of exogenously applied auxins: A HPLC-based method to characterize the intracellularly localized auxin transporters}},
doi = {10.1007/978-1-62703-592-7_23},
volume = {1056},
year = {2014},
}
@article{2246,
abstract = {Muller games are played by two players moving a token along a graph; the winner is determined by the set of vertices that occur infinitely often. The central algorithmic problem is to compute the winning regions for the players. Different classes and representations of Muller games lead to problems of varying computational complexity. One such class are parity games; these are of particular significance in computational complexity, as they remain one of the few combinatorial problems known to be in NP ∩ co-NP but not known to be in P. We show that winning regions for a Muller game can be determined from the alternating structure of its traps. To every Muller game we then associate a natural number that we call its trap depth; this parameter measures how complicated the trap structure is. We present algorithms for parity games that run in polynomial time for graphs of bounded trap depth, and in general run in time exponential in the trap depth. },
author = {Grinshpun, Andrey and Phalitnonkiat, Pakawat and Rubin, Sasha and Tarfulea, Andrei},
issn = {03043975},
journal = {Theoretical Computer Science},
pages = {73 -- 91},
publisher = {Elsevier},
title = {{Alternating traps in Muller and parity games}},
doi = {10.1016/j.tcs.2013.11.032},
volume = {521},
year = {2014},
}
@article{2248,
abstract = {Avian forelimb digit homology remains one of the standard themes in comparative biology and EvoDevo research. In order to resolve the apparent contradictions between embryological and paleontological evidence a variety of hypotheses have been presented in recent years. The proposals range from excluding birds from the dinosaur clade, to assignments of homology by different criteria, or even assuming a hexadactyl tetrapod limb ground state. At present two approaches prevail: the frame shift hypothesis and the pyramid reduction hypothesis. While the former postulates a homeotic shift of digit identities, the latter argues for a gradual bilateral reduction of phalanges and digits. Here we present a new model that integrates elements from both hypotheses with the existing experimental and fossil evidence. We start from the main feature common to both earlier concepts, the initiating ontogenetic event: reduction and loss of the anterior-most digit. It is proposed that a concerted mechanism of molecular regulation and developmental mechanics is capable of shifting the boundaries of hoxD expression in embryonic forelimb buds as well as changing the digit phenotypes. Based on a distinction between positional (topological) and compositional (phenotypic) homology criteria, we argue that the identity of the avian digits is II, III, IV, despite a partially altered phenotype. Finally, we introduce an alternative digit reduction scheme that reconciles the current fossil evidence with the presented molecular-morphogenetic model. Our approach identifies specific experiments that allow to test whether gene expression can be shifted and digit phenotypes can be altered by induced digit loss or digit gain.},
author = {Capek, Daniel and Metscher, Brian and Müller, Gerd},
issn = {15525007},
journal = {Journal of Experimental Zoology Part B: Molecular and Developmental Evolution},
number = {1},
pages = {1 -- 12},
publisher = {Wiley-Blackwell},
title = {{Thumbs down: A molecular-morphogenetic approach to avian digit homology}},
doi = {10.1002/jez.b.22545},
volume = {322},
year = {2014},
}
@article{2249,
abstract = {The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.},
author = {Chen, Yani and Aung, Kyaw and Rolčík, Jakub and Walicki, Kathryn and Friml, Jirí and Brandizzí, Federica},
issn = {09607412},
journal = {Plant Journal},
number = {1},
pages = {97 -- 107},
publisher = {Wiley-Blackwell},
title = {{Inter-regulation of the unfolded protein response and auxin signaling}},
doi = {10.1111/tpj.12373},
volume = {77},
year = {2014},
}
@article{2250,
abstract = {The genome sequences of new viruses often contain many "orphan" or "taxon-specific" proteins apparently lacking homologs. However, because viral proteins evolve very fast, commonly used sequence similarity detection methods such as BLAST may overlook homologs. We analyzed a data set of proteins from RNA viruses characterized as "genus specific" by BLAST. More powerful methods developed recently, such as HHblits or HHpred (available through web-based, user-friendly interfaces), could detect distant homologs of a quarter of these proteins, suggesting that these methods should be used to annotate viral genomes. In-depth manual analyses of a subset of the remaining sequences, guided by contextual information such as taxonomy, gene order, or domain cooccurrence, identified distant homologs of another third. Thus, a combination of powerful automated methods and manual analyses can uncover distant homologs of many proteins thought to be orphans. We expect these methodological results to be also applicable to cellular organisms, since they generally evolve much more slowly than RNA viruses. As an application, we reanalyzed the genome of a bee pathogen, Chronic bee paralysis virus (CBPV). We could identify homologs of most of its proteins thought to be orphans; in each case, identifying homologs provided functional clues. We discovered that CBPV encodes a domain homologous to the Alphavirus methyltransferase-guanylyltransferase; a putative membrane protein, SP24, with homologs in unrelated insect viruses and insect-transmitted plant viruses having different morphologies (cileviruses, higreviruses, blunerviruses, negeviruses); and a putative virion glycoprotein, ORF2, also found in negeviruses. SP24 and ORF2 are probably major structural components of the virionsd.},
author = {Kuchibhatla, Durga and Sherman, Westley and Chung, Betty and Cook, Shelley and Schneider, Georg and Eisenhaber, Birgit and Karlin, David},
issn = {0022538X},
journal = {Journal of Virology},
number = {1},
pages = {10 -- 20},
publisher = {ASM},
title = {{Powerful sequence similarity search methods and in-depth manual analyses can identify remote homologs in many apparently "orphan" viral proteins}},
doi = {10.1128/JVI.02595-13},
volume = {88},
year = {2014},
}
@article{2251,
abstract = {Sharp wave/ripple (SWR, 150–250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.},
author = {Csicsvari, Jozsef L and Dupret, David},
issn = {09628436},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1635},
publisher = {Royal Society, The},
title = {{Sharp wave/ripple network oscillations and learning-associated hippocampal maps}},
doi = {10.1098/rstb.2012.0528},
volume = {369},
year = {2014},
}
@article{2252,
abstract = {The pattern of inheritance and mechanism of sex determination can have important evolutionary consequences. We studied probabilistic sex determination in the ciliate Tetrahymena thermophila, which was previously shown to cause evolution of skewed sex ratios. We find that the genetic background alters the sex determination patterns of mat alleles in heterozygotes and that allelic interaction can differentially influence the expression probability of the 7 sexes. We quantify the dominance relationships between several mat alleles and find that A-type alleles, which specify sex I, are indeed recessive to B-type alleles, which are unable to specify that sex. Our results provide additional support for the presence of modifier loci and raise implications for the dynamics of sex ratios in populations of T. thermophila.},
author = {Phadke, Sujal and Paixao, Tiago and Pham, Tuan and Pham, Stephanie and Zufall, Rebecca},
issn = {00221503},
journal = {Journal of Heredity},
number = {1},
pages = {130 -- 135},
publisher = {Oxford University Press},
title = {{Genetic background alters dominance relationships between mat alleles in the ciliate Tetrahymena Thermophila}},
doi = {10.1093/jhered/est063},
volume = {105},
year = {2014},
}
@article{2253,
abstract = {Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor- glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct. As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.},
author = {Bailly, Aurélien and Wang, Bangjun and Zwiewka, Marta and Pollmann, Stephan and Schenck, Daniel and Lüthen, Hartwig and Schulz, Alexander and Friml, Jirí and Geisler, Markus},
issn = {09607412},
journal = {Plant Journal},
number = {1},
pages = {108 -- 118},
publisher = {Wiley-Blackwell},
title = {{Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth}},
doi = {10.1111/tpj.12369},
volume = {77},
year = {2014},
}
@article{2254,
abstract = {Theta-gamma network oscillations are thought to represent key reference signals for information processing in neuronal ensembles, but the underlying synaptic mechanisms remain unclear. To address this question, we performed whole-cell (WC) patch-clamp recordings from mature hippocampal granule cells (GCs) in vivo in the dentate gyrus of anesthetized and awake rats. GCs in vivo fired action potentials at low frequency, consistent with sparse coding in the dentate gyrus. GCs were exposed to barrages of fast AMPAR-mediated excitatory postsynaptic currents (EPSCs), primarily relayed from the entorhinal cortex, and inhibitory postsynaptic currents (IPSCs), presumably generated by local interneurons. EPSCs exhibited coherence with the field potential predominantly in the theta frequency band, whereas IPSCs showed coherence primarily in the gamma range. Action potentials in GCs were phase locked to network oscillations. Thus, theta-gamma-modulated synaptic currents may provide a framework for sparse temporal coding of information in the dentate gyrus.},
author = {Pernia-Andrade, Alejandro and Jonas, Peter M},
issn = {08966273},
journal = {Neuron},
number = {1},
pages = {140 -- 152},
publisher = {Elsevier},
title = {{Theta-gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations}},
doi = {10.1016/j.neuron.2013.09.046},
volume = {81},
year = {2014},
}
@article{2255,
abstract = {Motivated by applications in biology, we present an algorithm for estimating the length of tube-like shapes in 3-dimensional Euclidean space. In a first step, we combine the tube formula of Weyl with integral geometric methods to obtain an integral representation of the length, which we approximate using a variant of the Koksma-Hlawka Theorem. In a second step, we use tools from computational topology to decrease the dependence on small perturbations of the shape. We present computational experiments that shed light on the stability and the convergence rate of our algorithm.},
author = {Edelsbrunner, Herbert and Pausinger, Florian},
issn = {09249907},
journal = {Journal of Mathematical Imaging and Vision},
number = {1},
pages = {164 -- 177},
publisher = {Springer},
title = {{Stable length estimates of tube-like shapes}},
doi = {10.1007/s10851-013-0468-x},
volume = {50},
year = {2014},
}
@article{2257,
abstract = {Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such “K-pairwise” models—being systematic extensions of the previously used pairwise Ising models—provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.},
author = {Tkacik, Gasper and Marre, Olivier and Amodei, Dario and Schneidman, Elad and Bialek, William and Berry, Michael},
issn = {1553734X},
journal = {PLoS Computational Biology},
number = {1},
publisher = {Public Library of Science},
title = {{Searching for collective behavior in a large network of sensory neurons}},
doi = {10.1371/journal.pcbi.1003408},
volume = {10},
year = {2014},
}
@article{468,
abstract = {Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance) is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.},
author = {Cimadom, Arno and Ulloa, Angel and Meidl, Patrick and Zöttl, Markus and Zöttl, Elisabet and Fessl, Birgit and Nemeth, Erwin and Dvorak, Michael and Cunninghame, Francesca and Tebbich, Sabine},
journal = {PLoS One},
number = {9},
publisher = {Public Library of Science},
title = {{Invasive parasites habitat change and heavy rainfall reduce breeding success in Darwin's finches}},
doi = {10.1371/journal.pone.0107518},
volume = {9},
year = {2014},
}
@inproceedings{475,
abstract = {First cycle games (FCG) are played on a finite graph by two players who push a token along the edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some fixed property Y of the sequence of labels of the edges (or nodes) forming this cycle. These games are traditionally of interest because of their connection with infinite-duration games such as parity and mean-payoff games. We study the memory requirements for winning strategies of FCGs and certain associated infinite duration games. We exhibit a simple FCG that is not memoryless determined (this corrects a mistake in Memoryless determinacy of parity and mean payoff games: a simple proof by Bj⋯orklund, Sandberg, Vorobyov (2004) that claims that FCGs for which Y is closed under cyclic permutations are memoryless determined). We show that θ (n)! memory (where n is the number of nodes in the graph), which is always sufficient, may be necessary to win some FCGs. On the other hand, we identify easy to check conditions on Y (i.e., Y is closed under cyclic permutations, and both Y and its complement are closed under concatenation) that are sufficient to ensure that the corresponding FCGs and their associated infinite duration games are memoryless determined. We demonstrate that many games considered in the literature, such as mean-payoff, parity, energy, etc., satisfy these conditions. On the complexity side, we show (for efficiently computable Y) that while solving FCGs is in PSPACE, solving some families of FCGs is PSPACE-hard. },
author = {Aminof, Benjamin and Rubin, Sasha},
booktitle = {Electronic Proceedings in Theoretical Computer Science, EPTCS},
location = {Grenoble, France},
pages = {83 -- 90},
publisher = {Open Publishing Association},
title = {{First cycle games}},
doi = {10.4204/EPTCS.146.11},
volume = {146},
year = {2014},
}
@article{535,
abstract = {Energy games belong to a class of turn-based two-player infinite-duration games played on a weighted directed graph. It is one of the rare and intriguing combinatorial problems that lie in NP∩co-NP, but are not known to be in P. The existence of polynomial-time algorithms has been a major open problem for decades and apart from pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass in polynomial time. In this paper, we give several results based on the weight structures of the graph. First, we identify a notion of penalty and present a polynomial-time algorithm when the penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of weighted graphs. It includes several worst-case instances on which previous algorithms, such as value iteration and random facet algorithms, require at least sub-exponential time. Our main technique is developing the first non-trivial approximation algorithm and showing how to convert it to an exact algorithm. Moreover, we show that in a practical case in verification where weights are clustered around a constant number of values, the energy game problem can be solved in polynomial time. We also show that the problem is still as hard as in general when the clique-width is bounded or the graph is strongly ergodic, suggesting that restricting the graph structure does not necessarily help.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Krinninger, Sebastian and Nanongkai, Danupon},
journal = {Algorithmica},
number = {3},
pages = {457 -- 492},
publisher = {Springer},
title = {{Polynomial time algorithms for energy games with special weight structures}},
doi = {10.1007/s00453-013-9843-7},
volume = {70},
year = {2014},
}
@article{537,
abstract = {Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life-history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.},
author = {Prizak, Roshan and Ezard, Thomas and Hoyle, Rebecca},
journal = {Ecology and Evolution},
number = {15},
pages = {3139 -- 3145},
publisher = {Wiley-Blackwell},
title = {{Fitness consequences of maternal and grandmaternal effects}},
doi = {10.1002/ece3.1150},
volume = {4},
year = {2014},
}
@misc{5411,
abstract = {Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design process. Exploiting the compositional structure of system specifications can considerably reduce the effort in model-based testing. Moreover, inferring properties about the system from testing its individual components allows the designer to reduce the amount of integration testing.
In this paper, we study compositional properties of the IOCO-testing theory. We propose a new approach to composition and hiding operations, inspired by contract-based design and interface theories. These operations preserve behaviors that are compatible under composition and hiding, and prune away incompatible ones. The resulting specification characterizes the input sequences for which the unit testing of components is sufficient to infer the correctness of component integration without the need for further tests. We provide a methodology that uses these results to minimize integration testing effort, but also to detect potential weaknesses in specifications. While we focus on asynchronous models and the IOCO conformance relation, the resulting methodology can be applied to a broader class of systems.},
author = {Daca, Przemyslaw and Henzinger, Thomas A and Krenn, Willibald and Nickovic, Dejan},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{Compositional specifications for IOCO testing}},
doi = {10.15479/AT:IST-2014-148-v2-1},
year = {2014},
}
@misc{5412,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {31},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v1-1},
year = {2014},
}
@misc{5413,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v2-2},
year = {2014},
}
@misc{5414,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation.
We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v3-1},
year = {2014},
}
@misc{5415,
abstract = {Recently there has been a significant effort to add quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, several basic system properties such as average response time cannot be expressed with weighted automata. In this work, we introduce nested weighted automata as a new formalism for expressing important quantitative properties such as average response time. We establish an almost complete decidability picture for the basic decision problems for nested weighted automata, and illustrate its applicability in several domains. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2014-170-v1-1},
year = {2014},
}
@misc{5416,
abstract = {As hybrid systems involve continuous behaviors, they should be evaluated by quantitative methods, rather than qualitative methods. In this paper we adapt a quantitative framework, called model measuring, to the hybrid systems domain. The model-measuring problem asks, given a model M and a specification, what is the maximal distance such that all models within that distance from M satisfy (or violate) the specification. A distance function on models is given as part of the input of the problem. Distances, especially related to continuous behaviors are more natural in the hybrid case than the discrete case. We are interested in distances represented by monotonic hybrid automata, a hybrid counterpart of (discrete) weighted automata, whose recognized timed languages are monotone (w.r.t. inclusion) in the values of parameters.The contributions of this paper are twofold. First, we give sufficient conditions under which the model-measuring problem can be solved. Second, we discuss the modeling of distances and applications of the model-measuring problem.},
author = {Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Model measuring for hybrid systems}},
doi = {10.15479/AT:IST-2014-171-v1-1},
year = {2014},
}
@misc{5417,
abstract = {We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models M'within distance ρ from M satisfy (or violate)φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata.
The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification.
We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved.
We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging.
We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.},
author = {Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {14},
publisher = {IST Austria},
title = {{From model checking to model measuring}},
doi = {10.15479/AT:IST-2014-172-v1-1},
year = {2014},
}
@misc{5418,
abstract = {We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. Our results have tight connections with partial-observation stochastic games for which we derive new complexity results.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
issn = {2664-1690},
pages = {18},
publisher = {IST Austria},
title = {{Games with a weak adversary}},
doi = {10.15479/AT:IST-2014-176-v1-1},
year = {2014},
}
@misc{5419,
abstract = {We consider the reachability and shortest path problems on low tree-width graphs, with n nodes, m edges, and tree-width t, on a standard RAM with wordsize W. We use O to hide polynomial factors of the inverse of the Ackermann function. Our main contributions are three fold:
1. For reachability, we present an algorithm that requires O(n·t2·log(n/t)) preprocessing time, O(n·(t·log(n/t))/W) space, and O(t/W) time for pair queries and O((n·t)/W) time for single-source queries. Note that for constant t our algorithm uses O(n·logn) time for preprocessing; and O(n/W) time for single-source queries, which is faster than depth first search/breath first search (after the preprocessing).
2. We present an algorithm for shortest path that requires O(n·t2) preprocessing time, O(n·t) space, and O(t2) time for pair queries and O(n·t) time single-source queries.
3. We give a space versus query time trade-off algorithm for shortest path that, given any constant >0, requires O(n·t2) preprocessing time, O(n·t2) space, and O(n1−·t2) time for pair queries.
Our algorithms improve all existing results, and use very simple data structures.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {34},
publisher = {IST Austria},
title = {{Improved algorithms for reachability and shortest path on low tree-width graphs}},
doi = {10.15479/AT:IST-2014-187-v1-1},
year = {2014},
}
@misc{5420,
abstract = {We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy).},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
issn = {2664-1690},
pages = {49},
publisher = {IST Austria},
title = {{The value 1 problem for concurrent mean-payoff games}},
doi = {10.15479/AT:IST-2014-191-v1-1},
year = {2014},
}
@misc{5421,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are: (1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure). (2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{The complexity of evolution on graphs}},
doi = {10.15479/AT:IST-2014-190-v2-2},
year = {2014},
}
@techreport{5422,
abstract = {Notes from the Third Plenary for the Research Data Alliance in Dublin, Ireland on March 26 to 28, 2014 with focus on starting an institutional research data repository.},
author = {Porsche, Jana},
publisher = {none},
title = {{Notes from Research Data Alliance Plenary Meeting in Dublin, Ireland}},
year = {2014},
}