@article{9571, abstract = {As the size and complexity of models and datasets grow, so does the need for communication-efficient variants of stochastic gradient descent that can be deployed to perform parallel model training. One popular communication-compression method for data-parallel SGD is QSGD (Alistarh et al., 2017), which quantizes and encodes gradients to reduce communication costs. The baseline variant of QSGD provides strong theoretical guarantees, however, for practical purposes, the authors proposed a heuristic variant which we call QSGDinf, which demonstrated impressive empirical gains for distributed training of large neural networks. In this paper, we build on this work to propose a new gradient quantization scheme, and show that it has both stronger theoretical guarantees than QSGD, and matches and exceeds the empirical performance of the QSGDinf heuristic and of other compression methods.}, author = {Ramezani-Kebrya, Ali and Faghri, Fartash and Markov, Ilya and Aksenov, Vitalii and Alistarh, Dan-Adrian and Roy, Daniel M.}, issn = {15337928}, journal = {Journal of Machine Learning Research}, number = {114}, pages = {1−43}, publisher = {Journal of Machine Learning Research}, title = {{NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization}}, volume = {22}, year = {2021}, } @article{8544, abstract = {The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, yet this hypothesis has not been causally tested in vivo in the mammalian brain. Presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer. Developmental, overexpression, structure-function, and genetic epistasis analyses indicate that dendrite morphogenesis defects result from competitive synaptogenesis in a Cbln1/GluD2-dependent manner. A generative model of dendritic growth based on competitive synaptogenesis largely recapitulates GluD2 sparse and global knockout phenotypes. Our results support the synaptotrophic hypothesis at initial stages of dendrite development, suggest a second mode in which cumulative synapse formation inhibits further dendrite growth, and highlight the importance of competition in dendrite morphogenesis.}, author = {Takeo, Yukari H. and Shuster, S. Andrew and Jiang, Linnie and Hu, Miley and Luginbuhl, David J. and Rülicke, Thomas and Contreras, Ximena and Hippenmeyer, Simon and Wagner, Mark J. and Ganguli, Surya and Luo, Liqun}, issn = {1097-4199}, journal = {Neuron}, number = {4}, pages = {P629--644.E8}, publisher = {Elsevier}, title = {{GluD2- and Cbln1-mediated competitive synaptogenesis shapes the dendritic arbors of cerebellar Purkinje cells}}, doi = {10.1016/j.neuron.2020.11.028}, volume = {109}, year = {2021}, } @unpublished{9791, abstract = {We provide a definition of the effective mass for the classical polaron described by the Landau-Pekar equations. It is based on a novel variational principle, minimizing the energy functional over states with given (initial) velocity. The resulting formula for the polaron's effective mass agrees with the prediction by Landau and Pekar.}, author = {Feliciangeli, Dario and Rademacher, Simone Anna Elvira and Seiringer, Robert}, booktitle = {arXiv}, title = {{The effective mass problem for the Landau-Pekar equations}}, year = {2021}, } @article{7553, abstract = {Normative theories and statistical inference provide complementary approaches for the study of biological systems. A normative theory postulates that organisms have adapted to efficiently solve essential tasks, and proceeds to mathematically work out testable consequences of such optimality; parameters that maximize the hypothesized organismal function can be derived ab initio, without reference to experimental data. In contrast, statistical inference focuses on efficient utilization of data to learn model parameters, without reference to any a priori notion of biological function, utility, or fitness. Traditionally, these two approaches were developed independently and applied separately. Here we unify them in a coherent Bayesian framework that embeds a normative theory into a family of maximum-entropy “optimization priors.” This family defines a smooth interpolation between a data-rich inference regime (characteristic of “bottom-up” statistical models), and a data-limited ab inito prediction regime (characteristic of “top-down” normative theory). We demonstrate the applicability of our framework using data from the visual cortex, and argue that the flexibility it affords is essential to address a number of fundamental challenges relating to inference and prediction in complex, high-dimensional biological problems.}, author = {Mlynarski, Wiktor F and Hledik, Michal and Sokolowski, Thomas R and Tkačik, Gašper}, journal = {Neuron}, number = {7}, pages = {1227--1241.e5}, publisher = {Cell Press}, title = {{Statistical analysis and optimality of neural systems}}, doi = {10.1016/j.neuron.2021.01.020}, volume = {109}, year = {2021}, } @inproceedings{10598, abstract = { We consider the problem of estimating a signal from measurements obtained via a generalized linear model. We focus on estimators based on approximate message passing (AMP), a family of iterative algorithms with many appealing features: the performance of AMP in the high-dimensional limit can be succinctly characterized under suitable model assumptions; AMP can also be tailored to the empirical distribution of the signal entries, and for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms. However, a major issue of AMP is that in many models (such as phase retrieval), it requires an initialization correlated with the ground-truth signal and independent from the measurement matrix. Assuming that such an initialization is available is typically not realistic. In this paper, we solve this problem by proposing an AMP algorithm initialized with a spectral estimator. With such an initialization, the standard AMP analysis fails since the spectral estimator depends in a complicated way on the design matrix. Our main contribution is a rigorous characterization of the performance of AMP with spectral initialization in the high-dimensional limit. The key technical idea is to define and analyze a two-phase artificial AMP algorithm that first produces the spectral estimator, and then closely approximates the iterates of the true AMP. We also provide numerical results that demonstrate the validity of the proposed approach. }, author = {Mondelli, Marco and Venkataramanan, Ramji}, booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics}, editor = {Banerjee, Arindam and Fukumizu, Kenji}, issn = {2640-3498}, location = {Virtual, San Diego, CA, United States}, pages = {397--405}, publisher = {ML Research Press}, title = {{Approximate message passing with spectral initialization for generalized linear models}}, volume = {130}, year = {2021}, } @article{8196, abstract = {This paper aims to obtain a strong convergence result for a Douglas–Rachford splitting method with inertial extrapolation step for finding a zero of the sum of two set-valued maximal monotone operators without any further assumption of uniform monotonicity on any of the involved maximal monotone operators. Furthermore, our proposed method is easy to implement and the inertial factor in our proposed method is a natural choice. Our method of proof is of independent interest. Finally, some numerical implementations are given to confirm the theoretical analysis.}, author = {Shehu, Yekini and Dong, Qiao-Li and Liu, Lu-Lu and Yao, Jen-Chih}, issn = {1573-2924}, journal = {Optimization and Engineering}, pages = {2627--2653}, publisher = {Springer Nature}, title = {{New strong convergence method for the sum of two maximal monotone operators}}, doi = {10.1007/s11081-020-09544-5}, volume = {22}, year = {2021}, } @article{8911, abstract = {In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the germanium valence-band states, commonly known as holes, such as their inherently strong spin-orbit coupling and the ability to host superconducting pairing correlations. In this Review, we initially introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective. We then examine the material science progress underpinning germanium-based planar heterostructures and nanowires. We review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising prospects toward scalable quantum information processing. }, author = {Scappucci, Giordano and Kloeffel, Christoph and Zwanenburg, Floris A. and Loss, Daniel and Myronov, Maksym and Zhang, Jian-Jun and Franceschi, Silvano De and Katsaros, Georgios and Veldhorst, Menno}, issn = {2058-8437}, journal = {Nature Reviews Materials}, pages = {926–943 }, publisher = {Springer Nature}, title = {{The germanium quantum information route}}, doi = {10.1038/s41578-020-00262-z}, volume = {6}, year = {2021}, } @article{8338, abstract = {Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory.}, author = {Akopyan, Arseniy and Bobenko, Alexander I. and Schief, Wolfgang K. and Techter, Jan}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {938--976}, publisher = {Springer Nature}, title = {{On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs}}, doi = {10.1007/s00454-020-00240-w}, volume = {66}, year = {2021}, } @article{7939, abstract = {We design fast deterministic algorithms for distance computation in the Congested Clique model. Our key contributions include: A (2+ϵ)-approximation for all-pairs shortest paths in O(log2n/ϵ) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model. A (1+ϵ)-approximation for multi-source shortest paths from O(n−−√) sources in O(log2n/ϵ) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size. Our main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in O~(n1/6) rounds. }, author = {Censor-Hillel, Keren and Dory, Michal and Korhonen, Janne and Leitersdorf, Dean}, issn = {1432-0452}, journal = {Distributed Computing}, pages = {463--487}, publisher = {Springer Nature}, title = {{Fast approximate shortest paths in the congested clique}}, doi = {10.1007/s00446-020-00380-5}, volume = {34}, year = {2021}, } @article{8248, abstract = {We consider the following setting: suppose that we are given a manifold M in Rd with positive reach. Moreover assume that we have an embedded simplical complex A without boundary, whose vertex set lies on the manifold, is sufficiently dense and such that all simplices in A have sufficient quality. We prove that if, locally, interiors of the projection of the simplices onto the tangent space do not intersect, then A is a triangulation of the manifold, that is, they are homeomorphic.}, author = {Boissonnat, Jean-Daniel and Dyer, Ramsay and Ghosh, Arijit and Lieutier, Andre and Wintraecken, Mathijs}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {666--686}, publisher = {Springer Nature}, title = {{Local conditions for triangulating submanifolds of Euclidean space}}, doi = {10.1007/s00454-020-00233-9}, volume = {66}, year = {2021}, } @article{9002, abstract = { We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a function of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and analysis of binary polar codes with large kernels. When communicating reliably at rates within ε>0 of capacity, the code length n often scales as O(1/εμ), where the constant μ is called the scaling exponent. It is known that the optimal scaling exponent is μ=2, and it is achieved by random linear codes. The scaling exponent of conventional polar codes (based on the 2×2 kernel) on the BEC is μ=3.63. This falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof of the following result: for the BEC, there exist ℓ×ℓ binary kernels, such that polar codes constructed from these kernels achieve scaling exponent μ(ℓ) that tends to the optimal value of 2 as ℓ grows. We furthermore characterize precisely how large ℓ needs to be as a function of the gap between μ(ℓ) and 2. The resulting binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction complexity O(n) and encoding/decoding complexity O(nlogn).}, author = {Fazeli, Arman and Hassani, Hamed and Mondelli, Marco and Vardy, Alexander}, issn = {1557-9654}, journal = {IEEE Transactions on Information Theory}, number = {9}, pages = {5693--5710}, publisher = {IEEE}, title = {{Binary linear codes with optimal scaling: Polar codes with large kernels}}, doi = {10.1109/TIT.2020.3038806}, volume = {67}, year = {2021}, } @article{7883, abstract = {All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern.}, author = {Kuzmicz-Kowalska, Katarzyna and Kicheva, Anna}, issn = {17597692}, journal = {Wiley Interdisciplinary Reviews: Developmental Biology}, publisher = {Wiley}, title = {{Regulation of size and scale in vertebrate spinal cord development}}, doi = {10.1002/wdev.383}, year = {2021}, } @article{7905, abstract = {We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.}, author = {Brown, Adam and Wang, Bei}, issn = {1432-0444}, journal = {Discrete and Computational Geometry}, pages = {1166--1198}, publisher = {Springer Nature}, title = {{Sheaf-theoretic stratification learning from geometric and topological perspectives}}, doi = {10.1007/s00454-020-00206-y}, volume = {65}, year = {2021}, } @article{8601, abstract = {We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the spectral edges of the Wigner ensemble.}, author = {Cipolloni, Giorgio and Erdös, László and Schröder, Dominik J}, issn = {14322064}, journal = {Probability Theory and Related Fields}, publisher = {Springer Nature}, title = {{Edge universality for non-Hermitian random matrices}}, doi = {10.1007/s00440-020-01003-7}, year = {2021}, } @article{7925, abstract = {In this paper, we introduce a relaxed CQ method with alternated inertial step for solving split feasibility problems. We give convergence of the sequence generated by our method under some suitable assumptions. Some numerical implementations from sparse signal and image deblurring are reported to show the efficiency of our method.}, author = {Shehu, Yekini and Gibali, Aviv}, issn = {1862-4480}, journal = {Optimization Letters}, pages = {2109--2126}, publisher = {Springer Nature}, title = {{New inertial relaxed method for solving split feasibilities}}, doi = {10.1007/s11590-020-01603-1}, volume = {15}, year = {2021}, } @article{9438, abstract = {Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre–postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.}, author = {Vandael, David H and Okamoto, Yuji and Borges Merjane, Carolina and Vargas Barroso, Victor M and Suter, Benjamin and Jonas, Peter M}, issn = {17502799}, journal = {Nature Protocols}, number = {6}, pages = {2947–2967}, publisher = {Springer Nature}, title = {{Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses}}, doi = {10.1038/s41596-021-00526-0}, volume = {16}, year = {2021}, } @phdthesis{9992, abstract = {Blood – this is what animals use to heal wounds fast and efficient. Plants do not have blood circulation and their cells cannot move. However, plants have evolved remarkable capacities to regenerate tissues and organs preventing further damage. In my PhD research, I studied the wound healing in the Arabidopsis root. I used a UV laser to ablate single cells in the root tip and observed the consequent wound healing. Interestingly, the inner adjacent cells induced a division plane switch and subsequently adopted the cell type of the killed cell to replace it. We termed this form of wound healing “restorative divisions”. This initial observation triggered the questions of my PhD studies: How and why do cells orient their division planes, how do they feel the wound and why does this happen only in inner adjacent cells. For answering these questions, I used a quite simple experimental setup: 5 day - old seedlings were stained with propidium iodide to visualize cell walls and dead cells; ablation was carried out using a special laser cutter and a confocal microscope. Adaptation of the novel vertical microscope system made it possible to observe wounds in real time. This revealed that restorative divisions occur at increased frequency compared to normal divisions. Additionally, the major plant hormone auxin accumulates in wound adjacent cells and drives the expression of the wound-stress responsive transcription factor ERF115. Using this as a marker gene for wound responses, we found that an important part of wound signalling is the sensing of the collapse of the ablated cell. The collapse causes a radical pressure drop, which results in strong tissue deformations. These deformations manifest in an invasion of the now free spot specifically by the inner adjacent cells within seconds, probably because of higher pressure of the inner tissues. Long-term imaging revealed that those deformed cells continuously expand towards the wound hole and that this is crucial for the restorative division. These wound-expanding cells exhibit an abnormal, biphasic polarity of microtubule arrays before the division. Experiments inhibiting cell expansion suggest that it is the biphasic stretching that induces those MT arrays. Adapting the micromanipulator aspiration system from animal scientists at our institute confirmed the hypothesis that stretching influences microtubule stability. In conclusion, this shows that microtubules react to tissue deformation and this facilitates the observed division plane switch. This puts mechanical cues and tensions at the most prominent position for explaining the growth and wound healing properties of plants. Hence, it shines light onto the importance of understanding mechanical signal transduction. }, author = {Hörmayer, Lukas}, issn = {2663-337X}, pages = {168}, publisher = {Institute of Science and Technology Austria}, title = {{Wound healing in the Arabidopsis root meristem}}, doi = {10.15479/at:ista:9992}, year = {2021}, } @article{10816, abstract = {Pattern separation is a fundamental brain computation that converts small differences in input patterns into large differences in output patterns. Several synaptic mechanisms of pattern separation have been proposed, including code expansion, inhibition and plasticity; however, which of these mechanisms play a role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical pattern separation circuit, remains unclear. Here we show that a biologically realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient pattern separator. Both external gamma-modulated inhibition and internal lateral inhibition mediated by PV+-INs substantially contributed to pattern separation. Both local connectivity and fast signaling at GC–PV+-IN synapses were important for maximum effectiveness. Similarly, mossy fiber synapses with conditional detonator properties contributed to pattern separation. By contrast, perforant path synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted the network towards pattern completion. Our results demonstrate that the specific properties of cells and synapses optimize higher-order computations in biological networks and might be useful to improve the deep learning capabilities of technical networks.}, author = {Guzmán, José and Schlögl, Alois and Espinoza Martinez, Claudia and Zhang, Xiaomin and Suter, Benjamin and Jonas, Peter M}, issn = {2662-8457}, journal = {Nature Computational Science}, keywords = {general medicine}, number = {12}, pages = {830--842}, publisher = {Springer Nature}, title = {{How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network}}, doi = {10.1038/s43588-021-00157-1}, volume = {1}, year = {2021}, } @misc{10110, abstract = {Pattern separation is a fundamental brain computation that converts small differences in input patterns into large differences in output patterns. Several synaptic mechanisms of pattern separation have been proposed, including code expansion, inhibition and plasticity; however, which of these mechanisms play a role in the entorhinal cortex (EC)–dentate gyrus (DG)–CA3 circuit, a classical pattern separation circuit, remains unclear. Here we show that a biologically realistic, full-scale EC–DG–CA3 circuit model, including granule cells (GCs) and parvalbumin-positive inhibitory interneurons (PV+-INs) in the DG, is an efficient pattern separator. Both external gamma-modulated inhibition and internal lateral inhibition mediated by PV+-INs substantially contributed to pattern separation. Both local connectivity and fast signaling at GC–PV+-IN synapses were important for maximum effectiveness. Similarly, mossy fiber synapses with conditional detonator properties contributed to pattern separation. By contrast, perforant path synapses with Hebbian synaptic plasticity and direct EC–CA3 connection shifted the network towards pattern completion. Our results demonstrate that the specific properties of cells and synapses optimize higher-order computations in biological networks and might be useful to improve the deep learning capabilities of technical networks.}, author = {Guzmán, José and Schlögl, Alois and Espinoza Martinez, Claudia and Zhang, Xiaomin and Suter, Benjamin and Jonas, Peter M}, publisher = {IST Austria}, title = {{How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network}}, doi = {10.15479/AT:ISTA:10110}, year = {2021}, } @unpublished{10077, abstract = {Although much is known about how single neurons in the hippocampus represent an animal’s position, how cell-cell interactions contribute to spatial coding remains poorly understood. Using a novel statistical estimator and theoretical modeling, both developed in the framework of maximum entropy models, we reveal highly structured cell-to-cell interactions whose statistics depend on familiar vs. novel environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that differ in the signal-to-noise ratio of their spatial inputs. Moreover, the topology of the interactions facilitates linear decodability, making the information easy to read out by downstream circuits. These findings suggest that the efficient coding hypothesis is not applicable only to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.}, author = {Nardin, Michele and Csicsvari, Jozsef L and Tkačik, Gašper and Savin, Cristina}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{The structure of hippocampal CA1 interactions optimizes spatial coding across experience}}, doi = {10.1101/2021.09.28.460602}, year = {2021}, } @article{9250, abstract = {Aprotic alkali metal–O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.}, author = {Petit, Yann K. and Mourad, Eléonore and Prehal, Christian and Leypold, Christian and Windischbacher, Andreas and Mijailovic, Daniel and Slugovc, Christian and Borisov, Sergey M. and Zojer, Egbert and Brutti, Sergio and Fontaine, Olivier and Freunberger, Stefan Alexander}, issn = {1755-4349}, journal = {Nature Chemistry}, keywords = {General Chemistry, General Chemical Engineering}, number = {5}, pages = {465--471}, publisher = {Springer Nature}, title = {{Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation}}, doi = {10.1038/s41557-021-00643-z}, volume = {13}, year = {2021}, } @phdthesis{9623, abstract = {Cytoplasmic reorganizations are essential for morphogenesis. In large cells like oocytes, these reorganizations become crucial in patterning the oocyte for later stages of embryonic development. Ascidians oocytes reorganize their cytoplasm (ooplasm) in a spectacular manner. Ooplasmic reorganization is initiated at fertilization with the contraction of the actomyosin cortex along the animal-vegetal axis of the oocyte, driving the accumulation of cortical endoplasmic reticulum (cER), maternal mRNAs associated to it and a mitochondria-rich subcortical layer – the myoplasm – in a region of the vegetal pole termed contraction pole (CP). Here we have used the species Phallusia mammillata to investigate the changes in cell shape that accompany these reorganizations and the mechanochemical mechanisms underlining CP formation. We report that the length of the animal-vegetal (AV) axis oscillates upon fertilization: it first undergoes a cycle of fast elongation-lengthening followed by a slow expansion of mainly the vegetal pole (VP) of the cell. We show that the fast oscillation corresponds to a dynamic polarization of the actin cortex as a result of a fertilization-induced increase in cortical tension in the oocyte that triggers a rupture of the cortex at the animal pole and the establishment of vegetal-directed cortical flows. These flows are responsible for the vegetal accumulation of actin causing the VP to flatten. We find that the slow expansion of the VP, leading to CP formation, correlates with a relaxation of the vegetal cortex and that the myoplasm plays a role in the expansion. We show that the myoplasm is a solid-like layer that buckles under compression forces arising from the contracting actin cortex at the VP. Straightening of the myoplasm when actin flows stops, facilitates the expansion of the VP and the CP. Altogether, our results present a previously unrecognized role for the myoplasm in ascidian ooplasmic segregation. }, author = {Caballero Mancebo, Silvia}, isbn = {978-3-99078-012-1}, issn = {2663-337X}, pages = {111}, publisher = {Institute of Science and Technology Austria}, title = {{Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes}}, doi = {10.15479/at:ista:9623}, year = {2021}, } @article{9006, abstract = {Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.}, author = {Shamipour, Shayan and Caballero Mancebo, Silvia and Heisenberg, Carl-Philipp J}, issn = {18781551}, journal = {Developmental Cell}, number = {2}, pages = {P213--226}, publisher = {Elsevier}, title = {{Cytoplasm's got moves}}, doi = {10.1016/j.devcel.2020.12.002}, volume = {56}, year = {2021}, } @article{9429, abstract = {De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.}, author = {Morandell, Jasmin and Schwarz, Lena A and Basilico, Bernadette and Tasciyan, Saren and Dimchev, Georgi A and Nicolas, Armel and Sommer, Christoph M and Kreuzinger, Caroline and Dotter, Christoph and Knaus, Lisa and Dobler, Zoe and Cacci, Emanuele and Schur, Florian KM and Danzl, Johann G and Novarino, Gaia}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {1}, publisher = {Springer Nature}, title = {{Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development}}, doi = {10.1038/s41467-021-23123-x}, volume = {12}, year = {2021}, } @phdthesis{10058, abstract = {Quantum information and computation has become a vast field paved with opportunities for researchers and investors. As large multinational companies and international funds are heavily investing in quantum technologies it is still a question which platform is best suited for the task of realizing a scalable quantum processor. In this work we investigate hole spins in Ge quantum wells. These hold great promise as they possess several favorable properties: a small effective mass, a strong spin-orbit coupling, long relaxation time and an inherent immunity to hyperfine noise. All these characteristics helped Ge hole spin qubits to evolve from a single qubit to a fully entangled four qubit processor in only 3 years. Here, we investigated a qubit approach leveraging the large out-of-plane g-factors of heavy hole states in Ge quantum dots. We found this qubit to be reproducibly operable at extremely low magnetic field and at large speeds while maintaining coherence. This was possible because large differences of g-factors in adjacent dots can be achieved in the out-of-plane direction. In the in-plane direction the small g-factors, on the other hand, can be altered very effectively by the confinement potentials. Here, we found that this can even lead to a sign change of the g-factors. The resulting g-factor difference alters the dynamics of the system drastically and produces effects typically attributed to a spin-orbit induced spin-flip term. The investigations carried out in this thesis give further insights into the possibilities of holes in Ge and reveal new physical properties that need to be considered when designing future spin qubit experiments.}, author = {Jirovec, Daniel}, issn = {2663-337X}, keywords = {qubits, quantum computing, holes}, pages = {151}, publisher = {Institute of Science and Technology Austria}, title = {{Singlet-Triplet qubits and spin-orbit interaction in 2-dimensional Ge hole gases}}, doi = {10.15479/at:ista:10058}, year = {2021}, } @article{8909, abstract = {Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled X and Z-rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1μs which we extend beyond 15μs with echo techniques. These results show that Ge hole singlet triplet qubits outperform their electronic Si and GaAs based counterparts in speed and coherence, respectively. In addition, they are on par with Ge single spin qubits, but can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies.}, author = {Jirovec, Daniel and Hofmann, Andrea C and Ballabio, Andrea and Mutter, Philipp M. and Tavani, Giulio and Botifoll, Marc and Crippa, Alessandro and Kukucka, Josip and Sagi, Oliver and Martins, Frederico and Saez Mollejo, Jaime and Prieto Gonzalez, Ivan and Borovkov, Maksim and Arbiol, Jordi and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, issn = {1476-4660}, journal = {Nature Materials}, number = {8}, pages = {1106–1112}, publisher = {Springer Nature}, title = {{A singlet triplet hole spin qubit in planar Ge}}, doi = {10.1038/s41563-021-01022-2}, volume = {20}, year = {2021}, } @phdthesis{9397, abstract = {Accumulation of interstitial fluid (IF) between embryonic cells is a common phenomenon in vertebrate embryogenesis. Unlike other model systems, where these accumulations coalesce into a large central cavity – the blastocoel, in zebrafish, IF is more uniformly distributed between the deep cells (DC) before the onset of gastrulation. This is likely due to the presence of a large extraembryonic structure – the yolk cell (YC) at the position where the blastocoel typically forms in other model organisms. IF has long been speculated to play a role in tissue morphogenesis during embryogenesis, but direct evidence supporting such function is still sparse. Here we show that the relocalization of IF to the interface between the YC and DC/epiblast is critical for axial mesendoderm (ME) cell protrusion formation and migration along this interface, a key process in embryonic axis formation. We further demonstrate that axial ME cell migration and IF relocalization engage in a positive feedback loop, where axial ME migration triggers IF accumulation ahead of the advancing axial ME tissue by mechanically compressing the overlying epiblast cell layer. Upon compression, locally induced flow relocalizes the IF through the porous epiblast tissue resulting in an IF accumulation ahead of the leading axial ME. This IF accumulation, in turn, promotes cell protrusion formation and migration of the leading axial ME cells, thereby facilitating axial ME extension. Our findings reveal a central role of dynamic IF relocalization in orchestrating germ layer morphogenesis during gastrulation.}, author = {Huljev, Karla}, issn = {2663-337X}, pages = {101}, publisher = {Institute of Science and Technology Austria}, title = {{Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation}}, doi = {10.15479/at:ista:9397}, year = {2021}, } @unpublished{10066, abstract = {The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions. We give a key step towards tackling this variability with an algorithm that, without modification, is capable of tuning a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate SiGe heterostructure double quantum dot device from scratch. We achieve tuning times of 30, 10, and 92 minutes, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning.}, author = {Severin, B. and Lennon, D. T. and Camenzind, L. C. and Vigneau, F. and Fedele, F. and Jirovec, Daniel and Ballabio, A. and Chrastina, D. and Isella, G. and Kruijf, M. de and Carballido, M. J. and Svab, S. and Kuhlmann, A. V. and Braakman, F. R. and Geyer, S. and Froning, F. N. M. and Moon, H. and Osborne, M. A. and Sejdinovic, D. and Katsaros, Georgios and Zumbühl, D. M. and Briggs, G. A. D. and Ares, N.}, booktitle = {arXiv}, title = {{Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning}}, doi = {10.48550/arXiv.2107.12975}, year = {2021}, } @article{9437, abstract = {The synaptic connection from medial habenula (MHb) to interpeduncular nucleus (IPN) is critical for emotion-related behaviors and uniquely expresses R-type Ca2+ channels (Cav2.3) and auxiliary GABAB receptor (GBR) subunits, the K+-channel tetramerization domain-containing proteins (KCTDs). Activation of GBRs facilitates or inhibits transmitter release from MHb terminals depending on the IPN subnucleus, but the role of KCTDs is unknown. We therefore examined the localization and function of Cav2.3, GBRs, and KCTDs in this pathway in mice. We show in heterologous cells that KCTD8 and KCTD12b directly bind to Cav2.3 and that KCTD8 potentiates Cav2.3 currents in the absence of GBRs. In the rostral IPN, KCTD8, KCTD12b, and Cav2.3 co-localize at the presynaptic active zone. Genetic deletion indicated a bidirectional modulation of Cav2.3-mediated release by these KCTDs with a compensatory increase of KCTD8 in the active zone in KCTD12b-deficient mice. The interaction of Cav2.3 with KCTDs therefore scales synaptic strength independent of GBR activation.}, author = {Bhandari, Pradeep and Vandael, David H and Fernández-Fernández, Diego and Fritzius, Thorsten and Kleindienst, David and Önal, Hüseyin C and Montanaro-Punzengruber, Jacqueline-Claire and Gassmann, Martin and Jonas, Peter M and Kulik, Akos and Bettler, Bernhard and Shigemoto, Ryuichi and Koppensteiner, Peter}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals}}, doi = {10.7554/ELIFE.68274}, volume = {10}, year = {2021}, } @phdthesis{9562, abstract = {Left-right asymmetries can be considered a fundamental organizational principle of the vertebrate central nervous system. The hippocampal CA3-CA1 pyramidal cell synaptic connection shows an input-side dependent asymmetry where the hemispheric location of the presynaptic CA3 neuron determines the synaptic properties. Left-input synapses terminating on apical dendrites in stratum radiatum have a higher density of NMDA receptor subunit GluN2B, a lower density of AMPA receptor subunit GluA1 and smaller areas with less often perforated PSDs. On the other hand, left-input synapses terminating on basal dendrites in stratum oriens have lower GluN2B densities than right-input ones. Apical and basal synapses further employ different signaling pathways involved in LTP. SDS-digested freeze-fracture replica labeling can visualize synaptic membrane proteins with high sensitivity and resolution, and has been used to reveal the asymmetry at the electron microscopic level. However, it requires time-consuming manual demarcation of the synaptic surface for quantitative measurements. To facilitate the analysis of replica labeling, I first developed a software named Darea, which utilizes deep-learning to automatize this demarcation. With Darea I characterized the synaptic distribution of NMDA and AMPA receptors as well as the voltage-gated Ca2+ channels in CA1 stratum radiatum and oriens. Second, I explored the role of GluN2B and its carboxy-terminus in the establishment of input-side dependent hippocampal asymmetry. In conditional knock-out mice lacking GluN2B expression in CA1 and GluN2B-2A swap mice, where GluN2B carboxy-terminus was exchanged to that of GluN2A, no significant asymmetries of GluN2B, GluA1 and PSD area were detected. We further discovered a previously unknown functional asymmetry of GluN2A, which was also lost in the swap mouse. These results demonstrate that GluN2B carboxy-terminus plays a critical role in normal formation of input-side dependent asymmetry.}, author = {Kleindienst, David}, issn = {2663-337X}, pages = {124}, publisher = {Institute of Science and Technology Austria}, title = {{2B or not 2B: Hippocampal asymmetries mediated by NMDA receptor subunit GluN2B C-terminus and high-throughput image analysis by Deep-Learning}}, doi = {10.15479/at:ista:9562}, year = {2021}, } @inbook{9756, abstract = {High-resolution visualization and quantification of membrane proteins contribute to the understanding of their functions and the roles they play in physiological and pathological conditions. Sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) is a powerful electron microscopy method to study quantitatively the two-dimensional distribution of transmembrane proteins and their tightly associated proteins. During treatment with SDS, intracellular organelles and proteins not anchored to the replica are dissolved, whereas integral membrane proteins captured and stabilized by carbon/platinum deposition remain on the replica. Their intra- and extracellular domains become exposed on the surface of the replica, facilitating the accessibility of antibodies and, therefore, providing higher labeling efficiency than those obtained with other immunoelectron microscopy techniques. In this chapter, we describe the protocols of SDS-FRL adapted for mammalian brain samples, and optimization of the SDS treatment to increase the labeling efficiency for quantification of Cav2.1, the alpha subunit of P/Q-type voltage-dependent calcium channels utilizing deep learning algorithms.}, author = {Kaufmann, Walter and Kleindienst, David and Harada, Harumi and Shigemoto, Ryuichi}, booktitle = { Receptor and Ion Channel Detection in the Brain}, isbn = {9781071615218}, keywords = {Freeze-fracture replica: Deep learning, Immunogold labeling, Integral membrane protein, Electron microscopy}, pages = {267--283}, publisher = {Humana}, title = {{High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL)}}, doi = {10.1007/978-1-0716-1522-5_19}, volume = {169}, year = {2021}, } @phdthesis{8934, abstract = {In this thesis, we consider several of the most classical and fundamental problems in static analysis and formal verification, including invariant generation, reachability analysis, termination analysis of probabilistic programs, data-flow analysis, quantitative analysis of Markov chains and Markov decision processes, and the problem of data packing in cache management. We use techniques from parameterized complexity theory, polyhedral geometry, and real algebraic geometry to significantly improve the state-of-the-art, in terms of both scalability and completeness guarantees, for the mentioned problems. In some cases, our results are the first theoretical improvements for the respective problems in two or three decades.}, author = {Goharshady, Amir Kafshdar}, issn = {2663-337X}, pages = {278}, publisher = {Institute of Science and Technology Austria}, title = {{Parameterized and algebro-geometric advances in static program analysis}}, doi = {10.15479/AT:ISTA:8934}, year = {2021}, } @phdthesis{10307, abstract = {Bacteria-host interactions represent a continuous trade-off between benefit and risk. Thus, the host immune response is faced with a non-trivial problem – accommodate beneficial commensals and remove harmful pathogens. This is especially difficult as molecular patterns, such as lipopolysaccharide or specific surface organelles such as pili, are conserved in both, commensal and pathogenic bacteria. Type 1 pili, tightly regulated by phase variation, are considered an important virulence factor of pathogenic bacteria as they facilitate invasion into host cells. While invasion represents a de facto passive mechanism for pathogens to escape the host immune response, we demonstrate a fundamental role of type 1 pili as active modulators of the innate and adaptive immune response.}, author = {Tomasek, Kathrin}, issn = {2663-337X}, pages = {73}, publisher = {Institute of Science and Technology Austria}, title = {{Pathogenic Escherichia coli hijack the host immune response}}, doi = {10.15479/at:ista:10307}, year = {2021}, } @unpublished{10316, abstract = {A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on dendritic cells as a previously undescribed binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of pathogenic bacteria to CD14 lead to reduced dendritic cell migration and blunted expression of co-stimulatory molecules, both rate-limiting factors of T cell activation. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease.}, author = {Tomasek, Kathrin and Leithner, Alexander F and Glatzová, Ivana and Lukesch, Michael S. and Guet, Calin C and Sixt, Michael K}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14}}, doi = {10.1101/2021.10.18.464770}, year = {2021}, } @article{9010, abstract = {Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.}, author = {Ötvös, Krisztina and Marconi, Marco and Vega, Andrea and O’Brien, Jose and Johnson, Alexander J and Abualia, Rashed and Antonielli, Livio and Montesinos López, Juan C and Zhang, Yuzhou and Tan, Shutang and Cuesta, Candela and Artner, Christina and Bouguyon, Eleonore and Gojon, Alain and Friml, Jiří and Gutiérrez, Rodrigo A. and Wabnik, Krzysztof T and Benková, Eva}, issn = {14602075}, journal = {EMBO Journal}, number = {3}, publisher = {Embo Press}, title = {{Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport}}, doi = {10.15252/embj.2020106862}, volume = {40}, year = {2021}, } @article{9913, abstract = {Nitrate commands genome-wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild-type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post-translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.}, author = {Vega, Andrea and Fredes, Isabel and O’Brien, José and Shen, Zhouxin and Ötvös, Krisztina and Abualia, Rashed and Benková, Eva and Briggs, Steven P. and Gutiérrez, Rodrigo A.}, issn = {1469-3178}, journal = {EMBO Reports}, number = {9}, publisher = {Wiley}, title = {{Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture}}, doi = {10.15252/embr.202051813}, volume = {22}, year = {2021}, } @phdthesis{10303, abstract = {Nitrogen is an essential macronutrient determining plant growth, development and affecting agricultural productivity. Root, as a hub that perceives and integrates local and systemic signals on the plant’s external and endogenous nitrogen resources, communicates with other plant organs to consolidate their physiology and development in accordance with actual nitrogen balance. Over the last years, numerous studies demonstrated that these comprehensive developmental adaptations rely on the interaction between pathways controlling nitrogen homeostasis and hormonal networks acting globally in the plant body. However, molecular insights into how the information about the nitrogen status is translated through hormonal pathways into specific developmental output are lacking. In my work, I addressed so far poorly understood mechanisms underlying root-to-shoot communication that lead to a rapid re-adjustment of shoot growth and development after nitrate provision. Applying a combination of molecular, cell, and developmental biology approaches, genetics and grafting experiments as well as hormonal analytics, I identified and characterized an unknown molecular framework orchestrating shoot development with a root nitrate sensory system. }, author = {Abualia, Rashed}, issn = {2663-337X}, pages = {139}, publisher = {Institute of Science and Technology Austria}, title = {{Role of hormones in nitrate regulated growth}}, doi = {10.15479/at:ista:10303}, year = {2021}, } @phdthesis{9962, abstract = {The brain is one of the largest and most complex organs and it is composed of billions of neurons that communicate together enabling e.g. consciousness. The cerebral cortex is the largest site of neural integration in the central nervous system. Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final position, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating radial neuronal migration in vivo are however still unclear. Recent evidence suggests that distinct signaling cues act cell-autonomously but differentially at certain steps during the overall migration process. Moreover, functional analysis of genetic mosaics (mutant neurons present in wild-type/heterozygote environment) using the MADM (Mosaic Analysis with Double Markers) analyses in comparison to global knockout also indicate a significant degree of non-cell-autonomous and/or community effects in the control of cortical neuron migration. The interactions of cell-intrinsic (cell-autonomous) and cell-extrinsic (non-cell-autonomous) components are largely unknown. In part of this thesis work we established a MADM-based experimental strategy for the quantitative analysis of cell-autonomous gene function versus non-cell-autonomous and/or community effects. The direct comparison of mutant neurons from the genetic mosaic (cell-autonomous) to mutant neurons in the conditional and/or global knockout (cell-autonomous + non-cell-autonomous) allows to quantitatively analyze non-cell-autonomous effects. Such analysis enable the high-resolution analysis of projection neuron migration dynamics in distinct environments with concomitant isolation of genomic and proteomic profiles. Using these experimental paradigms and in combination with computational modeling we show and characterize the nature of non-cell-autonomous effects to coordinate radial neuron migration. Furthermore, this thesis discusses recent developments in neurodevelopment with focus on neuronal polarization and non-cell-autonomous mechanisms in neuronal migration.}, author = {Hansen, Andi H}, issn = {2663-337X}, keywords = {Neuronal migration, Non-cell-autonomous, Cell-autonomous, Neurodevelopmental disease}, pages = {182}, publisher = {Institute of Science and Technology Austria}, title = {{Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration}}, doi = {10.15479/at:ista:9962}, year = {2021}, } @article{9428, abstract = {Thermalization is the inevitable fate of many complex quantum systems, whose dynamics allow them to fully explore the vast configuration space regardless of the initial state---the behaviour known as quantum ergodicity. In a quest for experimental realizations of coherent long-time dynamics, efforts have focused on ergodicity-breaking mechanisms, such as integrability and localization. The recent discovery of persistent revivals in quantum simulators based on Rydberg atoms have pointed to the existence of a new type of behaviour where the system rapidly relaxes for most initial conditions, while certain initial states give rise to non-ergodic dynamics. This collective effect has been named ”quantum many-body scarring’by analogy with a related form of weak ergodicity breaking that occurs for a single particle inside a stadium billiard potential. In this Review, we provide a pedagogical introduction to quantum many-body scars and highlight the emerging connections with the semiclassical quantization of many-body systems. We discuss the relation between scars and more general routes towards weak violations of ergodicity due to embedded algebras and non-thermal eigenstates, and highlight possible applications of scars in quantum technology.}, author = {Serbyn, Maksym and Abanin, Dmitry A. and Papić, Zlatko}, issn = {1745-2481}, journal = {Nature Physics}, number = {6}, pages = {675–685}, publisher = {Nature Research}, title = {{Quantum many-body scars and weak breaking of ergodicity}}, doi = {10.1038/s41567-021-01230-2}, volume = {17}, year = {2021}, } @article{8931, abstract = {Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.}, author = {Gelová, Zuzana and Gallei, Michelle C and Pernisová, Markéta and Brunoud, Géraldine and Zhang, Xixi and Glanc, Matous and Li, Lanxin and Michalko, Jaroslav and Pavlovicova, Zlata and Verstraeten, Inge and Han, Huibin and Hajny, Jakub and Hauschild, Robert and Čovanová, Milada and Zwiewka, Marta and Hörmayer, Lukas and Fendrych, Matyas and Xu, Tongda and Vernoux, Teva and Friml, Jiří}, issn = {0168-9452}, journal = {Plant Science}, keywords = {Agronomy and Crop Science, Plant Science, Genetics, General Medicine}, publisher = {Elsevier}, title = {{Developmental roles of auxin binding protein 1 in Arabidopsis thaliana}}, doi = {10.1016/j.plantsci.2020.110750}, volume = {303}, year = {2021}, } @article{9287, abstract = {The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural (IAA) and synthetic (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network (EE/TGN), rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using Total Internal Reflection Fluorescence (TIRF) microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments. }, author = {Narasimhan, Madhumitha and Gallei, Michelle C and Tan, Shutang and Johnson, Alexander J and Verstraeten, Inge and Li, Lanxin and Rodriguez Solovey, Lesia and Han, Huibin and Himschoot, E and Wang, R and Vanneste, S and Sánchez-Simarro, J and Aniento, F and Adamowski, Maciek and Friml, Jiří}, issn = {1532-2548}, journal = {Plant Physiology}, number = {2}, pages = {1122–1142}, publisher = {Oxford University Press}, title = {{Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking}}, doi = {10.1093/plphys/kiab134}, volume = {186}, year = {2021}, } @phdthesis{10083, abstract = {Plant motions occur across a wide spectrum of timescales, ranging from seed dispersal through bursting (milliseconds) and stomatal opening (minutes) to long-term adaptation of gross architecture. Relatively fast motions include water-driven growth as exemplified by root cell expansion under abiotic/biotic stresses or during gravitropism. A showcase is a root growth inhibition in 30 seconds triggered by the phytohormone auxin. However, the cellular and molecular mechanisms are still largely unknown. This thesis covers the studies about this topic as follows. By taking advantage of microfluidics combined with live imaging, pharmaceutical tools, and transgenic lines, we examined the kinetics of and causal relationship among various auxininduced rapid cellular changes in root growth, apoplastic pH, cytosolic Ca2+, cortical microtubule (CMT) orientation, and vacuolar morphology. We revealed that CMT reorientation and vacuolar constriction are the consequence of growth itself instead of responding directly to auxin. In contrast, auxin induces apoplast alkalinization to rapidly inhibit root growth in 30 seconds. This auxin-triggered apoplast alkalinization results from rapid H+- influx that is contributed by Ca2+ inward channel CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14)-dependent Ca2+ signaling. To dissect which auxin signaling mediates the rapid apoplast alkalinization, we combined microfluidics and genetic engineering to verify that TIR1/AFB receptors conduct a non-transcriptional regulation on Ca2+ and H+ -influx. This non-canonical pathway is mostly mediated by the cytosolic portion of TIR1/AFB. On the other hand, we uncovered, using biochemical and phospho-proteomic analysis, that auxin cell surface signaling component TRANSMEMBRANE KINASE 1 (TMK1) plays a negative role during auxin-trigger apoplast alkalinization and root growth inhibition through directly activating PM H+ -ATPases. Therefore, we discovered that PM H+ -ATPases counteract instead of mediate the auxintriggered rapid H+ -influx, and that TIR1/AFB and TMK1 regulate root growth antagonistically. This opposite effect of TIR1/AFB and TMK1 is consistent during auxin-induced hypocotyl elongation, leading us to explore the relation of two signaling pathways. Assisted with biochemistry and fluorescent imaging, we verified for the first time that TIR1/AFB and TMK1 can interact with each other. The ability of TIR1/AFB binding to membrane lipid provides a basis for the interaction of plasma membrane- and cytosol-localized proteins. Besides, transgenic analysis combined with genetic engineering and biochemistry showed that vi they do function in the same pathway. Particularly, auxin-induced TMK1 increase is TIR1/AFB dependent, suggesting TIR1/AFB regulation on TMK1. Conversely, TMK1 also regulates TIR1/AFB protein levels and thus auxin canonical signaling. To follow the study of rapid growth regulation, we analyzed another rapid growth regulator, signaling peptide RALF1. We showed that RALF1 also triggers a rapid and reversible growth inhibition caused by H + influx, highly resembling but not dependent on auxin. Besides, RALF1 promotes auxin biosynthesis by increasing expression of auxin biosynthesis enzyme YUCCAs and thus induces auxin signaling in ca. 1 hour, contributing to the sustained RALF1-triggered growth inhibition. These studies collectively contribute to understanding rapid regulation on plant cell growth, novel auxin signaling pathway as well as auxin-peptide crosstalk. }, author = {Li, Lanxin}, issn = {2663-337X}, publisher = {Institute of Science and Technology Austria}, title = {{Rapid cell growth regulation in Arabidopsis}}, doi = {10.15479/at:ista:10083}, year = {2021}, } @article{10015, abstract = {Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxincontrolled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.}, author = {Nikonorova, N and Murphy, E and Fonseca de Lima, CF and Zhu, S and van de Cotte, B and Vu, LD and Balcerowicz, D and Li, Lanxin and Kong, X and De Rop, G and Beeckman, T and Friml, Jiří and Vissenberg, K and Morris, PC and Ding, Z and De Smet, I}, issn = {2073-4409}, journal = {Cells}, keywords = {primary root, (phospho)proteomics, auxin, (receptor) kinase}, publisher = {MDPI}, title = {{The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators}}, doi = {10.3390/cells10071665}, volume = {10}, year = {2021}, } @unpublished{10095, abstract = {Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, booktitle = {Research Square}, issn = {2693-5015}, title = {{Cell surface and intracellular auxin signalling for H+-fluxes in root growth}}, doi = {10.21203/rs.3.rs-266395/v3}, year = {2021}, } @phdthesis{10293, abstract = {Indirect reciprocity in evolutionary game theory is a prominent mechanism for explaining the evolution of cooperation among unrelated individuals. In contrast to direct reciprocity, which is based on individuals meeting repeatedly, and conditionally cooperating by using their own experiences, indirect reciprocity is based on individuals’ reputations. If a player helps another, this increases the helper’s public standing, benefitting them in the future. This lets cooperation in the population emerge without individuals having to meet more than once. While the two modes of reciprocity are intertwined, they are difficult to compare. Thus, they are usually studied in isolation. Direct reciprocity can maintain cooperation with simple strategies, and is robust against noise even when players do not remember more than their partner’s last action. Meanwhile, indirect reciprocity requires its successful strategies, or social norms, to be more complex. Exhaustive search previously identified eight such norms, called the “leading eight”, which excel at maintaining cooperation. However, as the first result of this thesis, we show that the leading eight break down once we remove the fundamental assumption that information is synchronized and public, such that everyone agrees on reputations. Once we consider a more realistic scenario of imperfect information, where reputations are private, and individuals occasionally misinterpret or miss observations, the leading eight do not promote cooperation anymore. Instead, minor initial disagreements can proliferate, fragmenting populations into subgroups. In a next step, we consider ways to mitigate this issue. We first explore whether introducing “generosity” can stabilize cooperation when players use the leading eight strategies in noisy environments. This approach of modifying strategies to include probabilistic elements for coping with errors is known to work well in direct reciprocity. However, as we show here, it fails for the more complex norms of indirect reciprocity. Imperfect information still prevents cooperation from evolving. On the other hand, we succeeded to show in this thesis that modifying the leading eight to use “quantitative assessment”, i.e. tracking reputation scores on a scale beyond good and bad, and making overall judgments of others based on a threshold, is highly successful, even when noise increases in the environment. Cooperation can flourish when reputations are more nuanced, and players have a broader understanding what it means to be “good.” Finally, we present a single theoretical framework that unites the two modes of reciprocity despite their differences. Within this framework, we identify a novel simple and successful strategy for indirect reciprocity, which can cope with noisy environments and has an analogue in direct reciprocity. We can also analyze decision making when different sources of information are available. Our results help highlight that for sustaining cooperation, already the most simple rules of reciprocity can be sufficient.}, author = {Schmid, Laura}, issn = {2663-337X}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{Evolution of cooperation via (in)direct reciprocity under imperfect information}}, doi = {10.15479/at:ista:10293}, year = {2021}, } @article{9997, abstract = {Indirect reciprocity is a mechanism for the evolution of cooperation based on social norms. This mechanism requires that individuals in a population observe and judge each other’s behaviors. Individuals with a good reputation are more likely to receive help from others. Previous work suggests that indirect reciprocity is only effective when all relevant information is reliable and publicly available. Otherwise, individuals may disagree on how to assess others, even if they all apply the same social norm. Such disagreements can lead to a breakdown of cooperation. Here we explore whether the predominantly studied ‘leading eight’ social norms of indirect reciprocity can be made more robust by equipping them with an element of generosity. To this end, we distinguish between two kinds of generosity. According to assessment generosity, individuals occasionally assign a good reputation to group members who would usually be regarded as bad. According to action generosity, individuals occasionally cooperate with group members with whom they would usually defect. Using individual-based simulations, we show that the two kinds of generosity have a very different effect on the resulting reputation dynamics. Assessment generosity tends to add to the overall noise and allows defectors to invade. In contrast, a limited amount of action generosity can be beneficial in a few cases. However, even when action generosity is beneficial, the respective simulations do not result in full cooperation. Our results suggest that while generosity can favor cooperation when individuals use the most simple strategies of reciprocity, it is disadvantageous when individuals use more complex social norms.}, author = {Schmid, Laura and Shati, Pouya and Hilbe, Christian and Chatterjee, Krishnendu}, issn = {2045-2322}, journal = {Scientific Reports}, keywords = {Multidisciplinary}, number = {1}, publisher = {Springer Nature}, title = {{The evolution of indirect reciprocity under action and assessment generosity}}, doi = {10.1038/s41598-021-96932-1}, volume = {11}, year = {2021}, } @article{9402, abstract = {Direct and indirect reciprocity are key mechanisms for the evolution of cooperation. Direct reciprocity means that individuals use their own experience to decide whether to cooperate with another person. Indirect reciprocity means that they also consider the experiences of others. Although these two mechanisms are intertwined, they are typically studied in isolation. Here, we introduce a mathematical framework that allows us to explore both kinds of reciprocity simultaneously. We show that the well-known ‘generous tit-for-tat’ strategy of direct reciprocity has a natural analogue in indirect reciprocity, which we call ‘generous scoring’. Using an equilibrium analysis, we characterize under which conditions either of the two strategies can maintain cooperation. With simulations, we additionally explore which kind of reciprocity evolves when members of a population engage in social learning to adapt to their environment. Our results draw unexpected connections between direct and indirect reciprocity while highlighting important differences regarding their evolvability.}, author = {Schmid, Laura and Chatterjee, Krishnendu and Hilbe, Christian and Nowak, Martin A.}, issn = {2397-3374}, journal = {Nature Human Behaviour}, number = {10}, pages = {1292–1302}, publisher = {Springer Nature}, title = {{A unified framework of direct and indirect reciprocity}}, doi = {10.1038/s41562-021-01114-8}, volume = {5}, year = {2021}, } @article{9817, abstract = {Elastic bending of initially flat slender elements allows the realization and economic fabrication of intriguing curved shapes. In this work, we derive an intuitive but rigorous geometric characterization of the design space of plane elastic rods with variable stiffness. It enables designers to determine which shapes are physically viable with active bending by visual inspection alone. Building on these insights, we propose a method for efficiently designing the geometry of a flat elastic rod that realizes a target equilibrium curve, which only requires solving a linear program. We implement this method in an interactive computational design tool that gives feedback about the feasibility of a design, and computes the geometry of the structural elements necessary to realize it within an instant. The tool also offers an iterative optimization routine that improves the fabricability of a model while modifying it as little as possible. In addition, we use our geometric characterization to derive an algorithm for analyzing and recovering the stability of elastic curves that would otherwise snap out of their unstable equilibrium shapes by buckling. We show the efficacy of our approach by designing and manufacturing several physical models that are assembled from flat elements.}, author = {Hafner, Christian and Bickel, Bernd}, issn = {1557-7368}, journal = {ACM Transactions on Graphics}, keywords = {Computing methodologies, shape modeling, modeling and simulation, theory of computation, computational geometry, mathematics of computing, mathematical optimization}, location = {Virtual}, number = {4}, publisher = {Association for Computing Machinery}, title = {{The design space of plane elastic curves}}, doi = {10.1145/3450626.3459800}, volume = {40}, year = {2021}, } @phdthesis{10135, abstract = {Plants maintain the capacity to develop new organs e.g. lateral roots post-embryonically throughout their whole life and thereby flexibly adapt to ever-changing environmental conditions. Plant hormones auxin and cytokinin are the main regulators of the lateral root organogenesis. Additionally to their solo activities, the interaction between auxin and cytokinin plays crucial role in fine-tuning of lateral root development and growth. In particular, cytokinin modulates auxin distribution within the developing lateral root by affecting the endomembrane trafficking of auxin transporter PIN1 and promoting its vacuolar degradation (Marhavý et al., 2011, 2014). This effect is independent of transcription and translation. Therefore, it suggests novel, non-canonical cytokinin activity occuring possibly on the posttranslational level. Impact of cytokinin and other plant hormones on auxin transporters (including PIN1) on the posttranslational level is described in detail in the introduction part of this thesis in a form of a review (Semeradova et al., 2020). To gain insights into the molecular machinery underlying cytokinin effect on the endomembrane trafficking in the plant cell, in particular on the PIN1 degradation, we conducted two large proteomic screens: 1) Identification of cytokinin binding proteins using chemical proteomics. 2) Monitoring of proteomic and phosphoproteomic changes upon cytokinin treatment. In the first screen, we identified DYNAMIN RELATED PROTEIN 2A (DRP2A). We found that DRP2A plays a role in cytokinin regulated processes during the plant growth and that cytokinin treatment promotes destabilization of DRP2A protein. However, the role of DRP2A in the PIN1 degradation remains to be elucidated. In the second screen, we found VACUOLAR PROTEIN SORTING 9A (VPS9A). VPS9a plays crucial role in plant’s response to cytokin and in cytokinin mediated PIN1 degradation. Altogether, we identified proteins, which bind to cytokinin and proteins that in response to cytokinin exhibit significantly changed abundance or phosphorylation pattern. By combining information from these two screens, we can pave our way towards understanding of noncanonical cytokinin effects.}, author = {Semerádová, Hana}, isbn = {978-3-99078-014-5}, issn = {2663-337X}, publisher = {Institute of Science and Technology Austria}, title = {{Molecular mechanisms of the cytokinin-regulated endomembrane trafficking to coordinate plant organogenesis}}, doi = {10.15479/at:ista:10135}, year = {2021}, } @phdthesis{9728, abstract = {Most real-world flows are multiphase, yet we know little about them compared to their single-phase counterparts. Multiphase flows are more difficult to investigate as their dynamics occur in large parameter space and involve complex phenomena such as preferential concentration, turbulence modulation, non-Newtonian rheology, etc. Over the last few decades, experiments in particle-laden flows have taken a back seat in favour of ever-improving computational resources. However, computers are still not powerful enough to simulate a real-world fluid with millions of finite-size particles. Experiments are essential not only because they offer a reliable way to investigate real-world multiphase flows but also because they serve to validate numerical studies and steer the research in a relevant direction. In this work, we have experimentally investigated particle-laden flows in pipes, and in particular, examined the effect of particles on the laminar-turbulent transition and the drag scaling in turbulent flows. For particle-laden pipe flows, an earlier study [Matas et al., 2003] reported how the sub-critical (i.e., hysteretic) transition that occurs via localised turbulent structures called puffs is affected by the addition of particles. In this study, in addition to this known transition, we found a super-critical transition to a globally fluctuating state with increasing particle concentration. At the same time, the Newtonian-type transition via puffs is delayed to larger Reynolds numbers. At an even higher concentration, only the globally fluctuating state is found. The dynamics of particle-laden flows are hence determined by two competing instabilities that give rise to three flow regimes: Newtonian-type turbulence at low, a particle-induced globally fluctuating state at high, and a coexistence state at intermediate concentrations. The effect of particles on turbulent drag is ambiguous, with studies reporting drag reduction, no net change, and even drag increase. The ambiguity arises because, in addition to particle concentration, particle shape, size, and density also affect the net drag. Even similar particles might affect the flow dissimilarly in different Reynolds number and concentration ranges. In the present study, we explored a wide range of both Reynolds number and concentration, using spherical as well as cylindrical particles. We found that the spherical particles do not reduce drag while the cylindrical particles are drag-reducing within a specific Reynolds number interval. The interval strongly depends on the particle concentration and the relative size of the pipe and particles. Within this interval, the magnitude of drag reduction reaches a maximum. These drag reduction maxima appear to fall onto a distinct power-law curve irrespective of the pipe diameter and particle concentration, and this curve can be considered as the maximum drag reduction asymptote for a given fibre shape. Such an asymptote is well known for polymeric flows but had not been identified for particle-laden flows prior to this work.}, author = {Agrawal, Nishchal}, issn = {2663-337X}, keywords = {Drag Reduction, Transition to Turbulence, Multiphase Flows, particle Laden Flows, Complex Flows, Experiments, Fluid Dynamics}, pages = {118}, publisher = {Institute of Science and Technology Austria}, title = {{Transition to turbulence and drag reduction in particle-laden pipe flows}}, doi = {10.15479/at:ista:9728}, year = {2021}, }