@article{7360, abstract = {Inflammation, which is a highly regulated host response against danger signals, may be harmful if it is excessive and deregulated. Ideally, anti-inflammatory therapy should autonomously commence as soon as possible after the onset of inflammation, should be controllable by a physician, and should not systemically block beneficial immune response in the long term. We describe a genetically encoded anti-inflammatory mammalian cell device based on a modular engineered genetic circuit comprising a sensor, an amplifier, a “thresholder” to restrict activation of a positive-feedback loop, a combination of advanced clinically used biopharmaceutical proteins, and orthogonal regulatory elements that linked modules into the functional device. This genetic circuit was autonomously activated by inflammatory signals, including endogenous cecal ligation and puncture (CLP)-induced inflammation in mice and serum from a systemic juvenile idiopathic arthritis (sIJA) patient, and could be reset externally by a chemical signal. The microencapsulated anti-inflammatory device significantly reduced the pathology in dextran sodium sulfate (DSS)-induced acute murine colitis, demonstrating a synthetic immunological approach for autonomous anti-inflammatory therapy.}, author = {Smole, Anže and Lainšček, Duško and Bezeljak, Urban and Horvat, Simon and Jerala, Roman}, issn = {1525-0016}, journal = {Molecular Therapy}, number = {1}, pages = {102--119}, publisher = {Elsevier}, title = {{A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation}}, doi = {10.1016/j.ymthe.2016.10.005}, volume = {25}, year = {2017}, } @inproceedings{750, abstract = {Modern communication technologies allow first responders to contact thousands of potential volunteers simultaneously for support during a crisis or disaster event. However, such volunteer efforts must be well coordinated and monitored, in order to offer an effective relief to the professionals. In this paper we extend earlier work on optimally assigning volunteers to selected landmark locations. In particular, we emphasize the aspect that obtaining good assignments requires not only advanced computational tools, but also a realistic measure of distance between volunteers and landmarks. Specifically, we propose the use of the Open Street Map (OSM) driving distance instead of he previously used flight distance. We find the OSM driving distance to be better aligned with the interests of volunteers and first responders. Furthermore, we show that relying on the flying distance leads to a substantial underestimation of the number of required volunteers, causing negative side effects in case of an actual crisis situation.}, author = {Pielorz, Jasmin and Prandtstetter, Matthias and Straub, Markus and Lampert, Christoph}, booktitle = {2017 IEEE International Conference on Big Data}, isbn = {978-153862714-3}, location = {Boston, MA, United States}, pages = {3760 -- 3763}, publisher = {IEEE}, title = {{Optimal geospatial volunteer allocation needs realistic distances}}, doi = {10.1109/BigData.2017.8258375}, year = {2017}, } @article{795, abstract = {We introduce a common generalization of the strong Hanani–Tutte theorem and the weak Hanani–Tutte theorem: if a graph G has a drawing D in the plane where every pair of independent edges crosses an even number of times, then G has a planar drawing preserving the rotation of each vertex whose incident edges cross each other evenly in D. The theorem is implicit in the proof of the strong Hanani–Tutte theorem by Pelsmajer, Schaefer and Štefankovič. We give a new, somewhat simpler proof.}, author = {Fulek, Radoslav and Kynčl, Jan and Pálvölgyi, Dömötör}, issn = {10778926}, journal = {Electronic Journal of Combinatorics}, number = {3}, publisher = {International Press}, title = {{Unified Hanani Tutte theorem}}, doi = {10.37236/6663}, volume = {24}, year = {2017}, } @article{797, abstract = {Phasenübergänge helfen beim Verständnis von Vielteilchensystemen in der Festkörperphysik und Fluiddynamik bis hin zur Teilchenphysik. Unserer internationalen Kollaboration ist es gelungen, einen neuartigen Phasenübergang in einem Quantensystem zu beobachten [1]. In einem Mikrowellenresonator konnte erstmals die spontane Zustandsänderung von undurchsichtig zu transparent nachgewiesen werden.}, author = {Fink, Johannes M}, journal = {Physik in unserer Zeit}, number = {3}, pages = {111 -- 113}, publisher = {Wiley}, title = {{Photonenblockade aufgelöst}}, doi = {10.1002/piuz.201770305}, volume = {48}, year = {2017}, } @article{807, abstract = {On January the 1st, 2016 a new agreement between 32 Austrian scientific libraries and the publisher Springer took its effect: this deal covers accessing the licensed content on the one hand, and publishing open access on the other hand. More than 1000 papers by Austrian authors were published open access at Springer in the first year alone. The working group "Springer Compact Evaluierung" made the data for these articles available via the platform OpenAPC and would like to use this opportunity to give a short account of what this publishing agreement actually entails and the working group intends to do.}, author = {Andrae, Magdalena and Villányi, Márton}, issn = {10222588}, journal = {Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare}, number = {2}, pages = {274 -- 280}, publisher = {VÖB}, title = {{Der Springer Compact-Deal – Ein erster Einblick in die Evaluierung einer Offsetting-Vereinbarung}}, doi = {10.31263/voebm.v70i2.1898}, volume = {70}, year = {2017}, }