@misc{5377,
abstract = {Two-player games on graphs are central in many problems in formal verification and program analysis such as synthesis and verification of open systems. In this work we consider solving recursive game graphs (or pushdown game graphs) that can model the control flow of sequential programs with recursion. While pushdown games have been studied before with qualitative objectives, such as reachability and ω-regular objectives, in this work we study for the first time such games with the most well-studied quantitative objective, namely, mean-payoff objectives. In pushdown games two types of strategies are relevant: (1) global strategies, that depend on the entire global history; and (2) modular strategies, that have only local memory and thus do not depend on the context of invocation, but only on the history of the current invocation of the module. Our main results are as follows: (1) One-player pushdown games with mean-payoff objectives under global strategies are decidable in polynomial time. (2) Two- player pushdown games with mean-payoff objectives under global strategies are undecidable. (3) One-player pushdown games with mean-payoff objectives under modular strategies are NP- hard. (4) Two-player pushdown games with mean-payoff objectives under modular strategies can be solved in NP (i.e., both one-player and two-player pushdown games with mean-payoff objectives under modular strategies are NP-complete). We also establish the optimal strategy complexity showing that global strategies for mean-payoff objectives require infinite memory even in one-player pushdown games; and memoryless modular strategies are sufficient in two- player pushdown games. Finally we also show that all the problems have the same complexity if the stack boundedness condition is added, where along with the mean-payoff objective the player must also ensure that the stack height is bounded.},
author = {Chatterjee, Krishnendu and Velner, Yaron},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{Mean-payoff pushdown games}},
doi = {10.15479/AT:IST-2012-0002},
year = {2012},
}
@misc{5378,
abstract = {One central issue in the formal design and analysis of reactive systems is the notion of refinement that asks whether all behaviors of the implementation is allowed by the specification. The local interpretation of behavior leads to the notion of simulation. Alternating transition systems (ATSs) provide a general model for composite reactive systems, and the simulation relation for ATSs is known as alternating simulation. The simulation relation for fair transition systems is called fair simulation. In this work our main contributions are as follows: (1) We present an improved algorithm for fair simulation with Büchi fairness constraints; our algorithm requires O(n3 · m) time as compared to the previous known O(n6)-time algorithm, where n is the number of states and m is the number of transitions. (2) We present a game based algorithm for alternating simulation that requires O(m2)-time as compared to the previous known O((n · m)2)-time algorithm, where n is the number of states and m is the size of transition relation. (3) We present an iterative algorithm for alternating simulation that matches the time complexity of the game based algorithm, but is more space efficient than the game based algorithm.},
author = {Chatterjee, Krishnendu and Chaubal, Siddhesh and Kamath, Pritish},
issn = {2664-1690},
pages = {21},
publisher = {IST Austria},
title = {{Faster algorithms for alternating refinement relations}},
doi = {10.15479/AT:IST-2012-0001},
year = {2012},
}
@inproceedings{2955,
abstract = {We consider two-player stochastic games played on finite graphs with reachability objectives where the first player tries to ensure a target state to be visited almost-surely (i.e., with probability 1), or positively (i.e., with positive probability), no matter the strategy of the second player. We classify such games according to the information and the power of randomization available to the players. On the basis of information, the game can be one-sided with either (a) player 1, or (b) player 2 having partial observation (and the other player has perfect observation), or two-sided with (c) both players having partial observation. On the basis of randomization, the players (a) may not be allowed to use randomization (pure strategies), or (b) may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) may use full randomization. Our main results for pure strategies are as follows. (1) For one-sided games with player 1 having partial observation we show that (in contrast to full randomized strategies) belief-based (subset-construction based) strategies are not sufficient, and we present an exponential upper bound on memory both for almostsure and positive winning strategies; we show that the problem of deciding the existence of almost-sure and positive winning strategies for player 1 is EXPTIME-complete. (2) For one-sided games with player 2 having partial observation we show that non-elementary memory is both necessary and sufficient for both almost-sure and positive winning strategies. (3) We show that for the general (two-sided) case finite-memory strategies are sufficient for both positive and almost-sure winning, and at least non-elementary memory is required. We establish the equivalence of the almost-sure winning problems for pure strategies and for randomized strategies with actions invisible. Our equivalence result exhibits serious flaws in previous results of the literature: we show a non-elementary memory lower bound for almost-sure winning whereas an exponential upper bound was previously claimed.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science},
location = {Dubrovnik, Croatia},
publisher = {IEEE},
title = {{Partial-observation stochastic games: How to win when belief fails}},
doi = {10.1109/LICS.2012.28},
year = {2012},
}
@inproceedings{3341,
abstract = {We consider two-player stochastic games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with \omega-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity gameswith respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the support of the transition function is same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally we show that the value continuity property breaks without the structurally equivalent assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal).},
author = {Chatterjee, Krishnendu},
location = {Tallinn, Estonia},
pages = {270 -- 285},
publisher = {Springer},
title = {{Robustness of structurally equivalent concurrent parity games}},
doi = {10.1007/978-3-642-28729-9_18},
volume = {7213},
year = {2012},
}
@inproceedings{2957,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by parity conditions. We consider three qualitative decision problems: (i) the positive decision problem asks whether there is a word that is accepted with positive probability; (ii) the almost decision problem asks whether there is a word that is accepted with probability 1; and (iii) the limit decision problem asks whether words are accepted with probability arbitrarily close to 1. We unify and generalize several decidability results for probabilistic automata over infinite words, and identify a robust (closed under union and intersection) subclass of probabilistic automata for which all the qualitative decision problems are decidable for parity conditions. We also show that if the input words are restricted to lasso shape (regular) words, then the positive and almost problems are decidable for all probabilistic automata with parity conditions. For most decidable problems we show an optimal PSPACE-complete complexity bound.},
author = {Chatterjee, Krishnendu and Tracol, Mathieu},
booktitle = {Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science},
location = {Dubrovnik, Croatia },
publisher = {IEEE},
title = {{Decidable problems for probabilistic automata on infinite words}},
doi = {10.1109/LICS.2012.29},
year = {2012},
}