@article{6496,
abstract = {We report the switching behavior of the full bacterial flagellum system that includes the filament and the motor in wild-type Escherichia coli cells. In sorting the motor behavior by the clockwise bias, we find that the distributions of the clockwise (CW) and counterclockwise (CCW) intervals are either exponential or nonexponential with long tails. At low bias, CW intervals are exponentially distributed and CCW intervals exhibit long tails. At intermediate CW bias (0.5) both CW and CCW intervals are mainly exponentially distributed. A simple model suggests that these two distinct switching behaviors are governed by the presence of signaling noise within the chemotaxis network. Low noise yields exponentially distributed intervals, whereas large noise yields nonexponential behavior with long tails. These drastically different motor statistics may play a role in optimizing bacterial behavior for a wide range of environmental conditions.},
author = {Park, Heungwon and Oikonomou, Panos and Guet, Calin C and Cluzel, Philippe},
issn = {0006-3495},
journal = {Biophysical Journal},
number = {10},
pages = {2336--2340},
publisher = {Elsevier BV},
title = {{Noise underlies switching behavior of the bacterial flagellum}},
doi = {10.1016/j.bpj.2011.09.040},
volume = {101},
year = {2011},
}
@inproceedings{3346,
abstract = {We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k reward functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the single-objective case, both randomization and memory are necessary for strategies, and that finite-memory randomized strategies are sufficient. Under the satisfaction objective, in contrast to the single-objective case, infinite memory is necessary for strategies, and that randomized memoryless strategies are sufficient for epsilon-approximation, for all epsilon>;0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of reward functions, for all epsilon>;0. Our results also reveal flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, correct the flaws and obtain improved results.},
author = {Brázdil, Tomáš and Brožek, Václav and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
location = {Toronto, Canada},
publisher = {IEEE},
title = {{Two views on multiple mean payoff objectives in Markov Decision Processes}},
doi = {10.1109/LICS.2011.10},
year = {2011},
}
@article{3353,
abstract = {Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.},
author = {Tripakis, Stavros and Lickly, Ben and Henzinger, Thomas A and Lee, Edward},
journal = {ACM Transactions on Programming Languages and Systems (TOPLAS)},
number = {4},
publisher = {ACM},
title = {{A theory of synchronous relational interfaces}},
doi = {10.1145/1985342.1985345},
volume = {33},
year = {2011},
}
@inproceedings{3264,
abstract = {Verification of programs with procedures, multi-threaded programs, and higher-order functional programs can be effectively au- tomated using abstraction and refinement schemes that rely on spurious counterexamples for abstraction discovery. The analysis of counterexam- ples can be automated by a series of interpolation queries, or, alterna- tively, as a constraint solving query expressed by a set of recursion free Horn clauses. (A set of interpolation queries can be formulated as a single constraint over Horn clauses with linear dependency structure between the unknown relations.) In this paper we present an algorithm for solving recursion free Horn clauses over a combined theory of linear real/rational arithmetic and uninterpreted functions. Our algorithm performs resolu- tion to deal with the clausal structure and relies on partial solutions to deal with (non-local) instances of functionality axioms.},
author = {Gupta, Ashutosh and Popeea, Corneliu and Rybalchenko, Andrey},
editor = {Yang, Hongseok},
location = {Kenting, Taiwan},
pages = {188 -- 203},
publisher = {Springer},
title = {{Solving recursion-free Horn clauses over LI+UIF}},
doi = {10.1007/978-3-642-25318-8_16},
volume = {7078},
year = {2011},
}
@inproceedings{3360,
abstract = {A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, which values a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by lambda^i, where the discount factor lambda is a fixed rational number greater than 1. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, which reflects the assumption that earlier weights are more important than later weights. Determinizing automata is often essential, for example, in formal verification, where there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum automata are, in general, not determinizable: it is currently known that for every rational discount factor 1 < lambda < 2, there is an NDA with lambda (denoted lambda-NDA) that cannot be determinized. We provide positive news, showing that every NDA with an integral factor is determinizable. We also complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: we show that for every non-integral rational factor lambda, there is a nondeterminizable lambda-NDA. Finally, we prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. This shows that for integral discount factors, the class of NDAs forms an attractive specification formalism in quantitative formal verification. All our results hold equally for automata over finite words and for automata over infinite words. },
author = {Boker, Udi and Henzinger, Thomas A},
location = {Bergen, Norway},
pages = {82 -- 96},
publisher = {Springer},
title = {{Determinizing discounted-sum automata}},
doi = {10.4230/LIPIcs.CSL.2011.82},
volume = {12},
year = {2011},
}