@inproceedings{3342,
abstract = {We consider Markov decision processes (MDPs) with ω-regular specifications given as parity objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. The algorithms for the computation of the almost-sure winning set for parity objectives iteratively use the solutions for the almost-sure winning set for Büchi objectives (a special case of parity objectives). Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(nm) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs often have constant out-degree, and then our symbolic algorithm takes O(nn) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(nK) symbolic steps, where K is the maximal number of edges of strongly connected components (scc’s) of the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4 ·n symbolic steps.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Joglekar, Manas and Nisarg, Shah},
editor = {Gopalakrishnan, Ganesh and Qadeer, Shaz},
location = {Snowbird, USA},
pages = {260 -- 276},
publisher = {Springer},
title = {{Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives}},
doi = {10.1007/978-3-642-22110-1_21},
volume = {6806},
year = {2011},
}
@inproceedings{3266,
abstract = {We present a joint image segmentation and labeling model (JSL) which, given a bag of figure-ground segment hypotheses extracted at multiple image locations and scales, constructs a joint probability distribution over both the compatible image interpretations (tilings or image segmentations) composed from those segments, and over their labeling into categories. The process of drawing samples from the joint distribution can be interpreted as first sampling tilings, modeled as maximal cliques, from a graph connecting spatially non-overlapping segments in the bag [1], followed by sampling labels for those segments, conditioned on the choice of a particular tiling. We learn the segmentation and labeling parameters jointly, based on Maximum Likelihood with a novel Incremental Saddle Point estimation procedure. The partition function over tilings and labelings is increasingly more accurately approximated by including incorrect configurations that a not-yet-competent model rates probable during learning. We show that the proposed methodologymatches the current state of the art in the Stanford dataset [2], as well as in VOC2010, where 41.7% accuracy on the test set is achieved.},
author = {Ion, Adrian and Carreira, Joao and Sminchisescu, Cristian},
booktitle = {NIPS Proceedings},
location = {Granada, Spain},
pages = {1827 -- 1835},
publisher = {Neural Information Processing Systems Foundation},
title = {{Probabilistic joint image segmentation and labeling}},
volume = {24},
year = {2011},
}
@phdthesis{3273,
author = {Maître, Jean-Léon},
publisher = {IST Austria},
title = {{Mechanics of adhesion and de‐adhesion in zebrafish germ layer progenitors}},
year = {2011},
}
@inproceedings{3297,
abstract = {Animating detailed liquid surfaces has always been a challenge for computer graphics researchers and visual effects artists. Over the past few years, researchers in this field have focused on mesh-based surface tracking to synthesize extremely detailed liquid surfaces as efficiently as possible. This course provides a solid understanding of the steps required to create a fluid simulator with a mesh-based liquid surface.
The course begins with an overview of several existing liquid-surface-tracking techniques and the pros and cons of each method. Then it explains how to embed a triangle mesh into a finite-difference-based fluid simulator and describes several methods for allowing the liquid surface to merge together or break apart. The final section showcases the benefits and further applications of a mesh-based liquid surface, highlighting state-of-the-art methods for tracking colors and textures, maintaining liquid volume, preserving small surface features, and simulating realistic surface-tension waves.},
author = {Wojtan, Christopher J and Müller Fischer, Matthias and Brochu, Tyson},
location = {Vancouver, BC, Canada},
publisher = {ACM},
title = {{Liquid simulation with mesh-based surface tracking}},
doi = {10.1145/2037636.2037644},
year = {2011},
}
@inproceedings{3324,
abstract = {Automated termination provers often use the following schema to prove that a program terminates: construct a relational abstraction of the program's transition relation and then show that the relational abstraction is well-founded. The focus of current tools has been on developing sophisticated techniques for constructing the abstractions while relying on known decidable logics (such as linear arithmetic) to express them. We believe we can significantly increase the class of programs that are amenable to automated termination proofs by identifying more expressive decidable logics for reasoning about well-founded relations. We therefore present a new decision procedure for reasoning about multiset orderings, which are among the most powerful orderings used to prove termination. We show that, using our decision procedure, one can automatically prove termination of natural abstractions of programs.},
author = {Piskac, Ruzica and Wies, Thomas},
editor = {Jhala, Ranjit and Schmidt, David},
location = {Texas, USA},
pages = {371 -- 386},
publisher = {Springer},
title = {{Decision procedures for automating termination proofs}},
doi = {10.1007/978-3-642-18275-4_26},
volume = {6538},
year = {2011},
}