@article{6029, abstract = {Protein micropatterning has become an important tool for many biomedical applications as well as in academic research. Current techniques that allow to reduce the feature size of patterns below 1 μm are, however, often costly and require sophisticated equipment. We present here a straightforward and convenient method to generate highly condensed nanopatterns of proteins without the need for clean room facilities or expensive equipment. Our approach is based on nanocontact printing and allows for the fabrication of protein patterns with feature sizes of 80 nm and periodicities down to 140 nm. This was made possible by the use of the material X-poly(dimethylsiloxane) (X-PDMS) in a two-layer stamp layout for protein printing. In a proof of principle, different proteins at various scales were printed and the pattern quality was evaluated by atomic force microscopy (AFM) and super-resolution fluorescence microscopy.}, author = {Lindner, Marco and Tresztenyak, Aliz and Fülöp, Gergö and Jahr, Wiebke and Prinz, Adrian and Prinz, Iris and Danzl, Johann G and Schütz, Gerhard J. and Sevcsik, Eva}, issn = {22962646}, journal = {Frontiers in Chemistry}, publisher = {Frontiers Media S.A.}, title = {{A fast and simple contact printing approach to generate 2D protein nanopatterns}}, doi = {10.3389/fchem.2018.00655}, volume = {6}, year = {2019}, } @article{6028, abstract = {We give a construction allowing us to build local renormalized solutions to general quasilinear stochastic PDEs within the theory of regularity structures, thus greatly generalizing the recent results of [1, 5, 11]. Loosely speaking, our construction covers quasilinear variants of all classes of equations for which the general construction of [3, 4, 7] applies, including in particular one‐dimensional systems with KPZ‐type nonlinearities driven by space‐time white noise. In a less singular and more specific case, we furthermore show that the counterterms introduced by the renormalization procedure are given by local functionals of the solution. The main feature of our construction is that it allows exploitation of a number of existing results developed for the semilinear case, so that the number of additional arguments it requires is relatively small.}, author = {Gerencser, Mate and Hairer, Martin}, journal = {Communications on Pure and Applied Mathematics}, number = {9}, pages = {1983--2005}, publisher = {Wiley}, title = {{A solution theory for quasilinear singular SPDEs}}, doi = {10.1002/cpa.21816}, volume = {72}, year = {2019}, } @inproceedings{5948, abstract = {We study the termination problem for nondeterministic probabilistic programs. We consider the bounded termination problem that asks whether the supremum of the expected termination time over all schedulers is bounded. First, we show that ranking supermartingales (RSMs) are both sound and complete for proving bounded termination over nondeterministic probabilistic programs. For nondeterministic probabilistic programs a previous result claimed that RSMs are not complete for bounded termination, whereas our result corrects the previous flaw and establishes completeness with a rigorous proof. Second, we present the first sound approach to establish lower bounds on expected termination time through RSMs.}, author = {Fu, Hongfei and Chatterjee, Krishnendu}, booktitle = {International Conference on Verification, Model Checking, and Abstract Interpretation}, location = {Cascais, Portugal}, pages = {468--490}, publisher = {Springer Nature}, title = {{Termination of nondeterministic probabilistic programs}}, doi = {10.1007/978-3-030-11245-5_22}, volume = {11388}, year = {2019}, } @article{5945, abstract = {In developing organisms, spatially prescribed cell identities are thought to be determined by the expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical framework capable of exposing the rules and precision of cell specification over developmental time. We use the gap gene network in the early fly embryo as an example to show how expression levels of the four gap genes can be jointly decoded into an optimal specification of position with 1% accuracy. The decoder correctly predicts, with no free parameters, the dynamics of pair-rule expression patterns at different developmental time points and in various mutant backgrounds. Precise cellular identities are thus available at the earliest stages of development, contrasting the prevailing view of positional information being slowly refined across successive layers of the patterning network. Our results suggest that developmental enhancers closely approximate a mathematically optimal decoding strategy.}, author = {Petkova, Mariela D. and Tkacik, Gasper and Bialek, William and Wieschaus, Eric F. and Gregor, Thomas}, journal = {Cell}, number = {4}, pages = {844--855.e15}, publisher = {Cell Press}, title = {{Optimal decoding of cellular identities in a genetic network}}, doi = {10.1016/j.cell.2019.01.007}, volume = {176}, year = {2019}, } @article{5943, abstract = {The hairpin instability of a jet in a crossflow (JICF) for a low jet-to-crossflow velocity ratio is investigated experimentally for a velocity ratio range of R ∈ (0.14, 0.75) and crossflow Reynolds numbers ReD ∈ (260, 640). From spectral analysis we characterize the Strouhal number and amplitude of the hairpin instability as a function of R and ReD. We demonstrate that the dynamics of the hairpins is well described by the Landau model, and, hence, that the instability occurs through Hopf bifurcation, similarly to other hydrodynamical oscillators such as wake behind different bluff bodies. Using the Landau model, we determine the precise threshold values of hairpin shedding. We also study the spatial dependence of this hydrodynamical instability, which shows a global behaviour.}, author = {Klotz, Lukasz and Gumowski, Konrad and Wesfreid, José Eduardo}, journal = {Journal of Fluid Mechanics}, pages = {386--406}, publisher = {Cambridge University Press}, title = {{Experiments on a jet in a crossflow in the low-velocity-ratio regime}}, doi = {10.1017/jfm.2018.974}, volume = {863}, year = {2019}, }