@article{9361, abstract = {The multimeric matrix (M) protein of clinically relevant paramyxoviruses orchestrates assembly and budding activity of viral particles at the plasma membrane (PM). We identified within the canine distemper virus (CDV) M protein two microdomains, potentially assuming α-helix structures, which are essential for membrane budding activity. Remarkably, while two rationally designed microdomain M mutants (E89R, microdomain 1 and L239D, microdomain 2) preserved proper folding, dimerization, interaction with the nucleocapsid protein, localization at and deformation of the PM, the virus-like particle formation, as well as production of infectious virions (as monitored using a membrane budding-complementation system), were, in sharp contrast, strongly impaired. Of major importance, raster image correlation spectroscopy (RICS) revealed that both microdomains contributed to finely tune M protein mobility specifically at the PM. Collectively, our data highlighted the cornerstone membrane budding-priming activity of two spatially discrete M microdomains, potentially by coordinating the assembly of productive higher oligomers at the PM.}, author = {Gast, Matthieu and Kadzioch, Nicole P. and Milius, Doreen and Origgi, Francesco and Plattet, Philippe}, issn = {23795042}, journal = {mSphere}, number = {2}, publisher = {American Society for Microbiology}, title = {{Oligomerization and cell egress controlled by two microdomains of canine distemper virus matrix protein}}, doi = {10.1128/mSphere.01024-20}, volume = {6}, year = {2021}, } @article{9376, abstract = {This paper presents a method for designing planar multistable compliant structures. Given a sequence of desired stable states and the corresponding poses of the structure, we identify the topology and geometric realization of a mechanism—consisting of bars and joints—that is able to physically reproduce the desired multistable behavior. In order to solve this problem efficiently, we build on insights from minimally rigid graph theory to identify simple but effective topologies for the mechanism. We then optimize its geometric parameters, such as joint positions and bar lengths, to obtain correct transitions between the given poses. Simultaneously, we ensure adequate stability of each pose based on an effective approximate error metric related to the elastic energy Hessian of the bars in the mechanism. As demonstrated by our results, we obtain functional multistable mechanisms of manageable complexity that can be fabricated using 3D printing. Further, we evaluated the effectiveness of our method on a large number of examples in the simulation and fabricated several physical prototypes.}, author = {Zhang, Ran and Auzinger, Thomas and Bickel, Bernd}, issn = {1557-7368}, journal = {ACM Transactions on Graphics}, keywords = {multistability, mechanism, computational design, rigidity}, number = {5}, publisher = {Association for Computing Machinery}, title = {{Computational design of planar multistable compliant structures}}, doi = {10.1145/3453477}, volume = {40}, year = {2021}, } @article{9375, abstract = {Genetic variation segregates as linked sets of variants, or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. And yet, genomic data often lack haplotype information, due to constraints in sequencing technologies. Here we present “haplotagging”, a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species the geographic clines for the major wing pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the centre of the hybrid zone. We propose that shared warning signalling (Müllerian mimicry) may couple the cline shifts seen in both species, and facilitate the parallel co-emergence of a novel hybrid morph in both co-mimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations.}, author = {Meier, Joana I. and Salazar, Patricio A. and Kučka, Marek and Davies, Robert William and Dréau, Andreea and Aldás, Ismael and Power, Olivia Box and Nadeau, Nicola J. and Bridle, Jon R. and Rolian, Campbell and Barton, Nicholas H and McMillan, W. Owen and Jiggins, Chris D. and Chan, Yingguang Frank}, issn = {0027-8424}, journal = {PNAS}, number = {25}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Haplotype tagging reveals parallel formation of hybrid races in two butterfly species}}, doi = {10.1073/pnas.2015005118}, volume = {118}, year = {2021}, } @article{9394, abstract = {Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.}, author = {Koch, Eva L. and Morales, Hernán E. and Larsson, Jenny and Westram, Anja M and Faria, Rui and Lemmon, Alan R. and Lemmon, E. Moriarty and Johannesson, Kerstin and Butlin, Roger K.}, issn = {2056-3744}, journal = {Evolution Letters}, number = {3}, pages = {196--213}, publisher = {Wiley}, title = {{Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis}}, doi = {10.1002/evl3.227}, volume = {5}, year = {2021}, } @article{9381, abstract = {A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.}, author = {Kleshnina, Maria and Streipert, Sabrina S. and Filar, Jerzy A. and Chatterjee, Krishnendu}, issn = {15537358}, journal = {PLoS Computational Biology}, number = {4}, publisher = {Public Library of Science}, title = {{Mistakes can stabilise the dynamics of rock-paper-scissors games}}, doi = {10.1371/journal.pcbi.1008523}, volume = {17}, year = {2021}, }