@misc{15108, abstract = {in the research article "Efficiency and resilience of cooperation in asymmetric social dilemmas" (by Valentin Hübner, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina). We used different implementations for the case of two and three players, both described below.}, author = {Hübner, Valentin and Kleshnina, Maria}, publisher = {Zenodo}, title = {{Computer code for "Efficiency and resilience of cooperation in asymmetric social dilemmas"}}, doi = {10.5281/ZENODO.10639167}, year = {2024}, } @article{15097, abstract = {Global storm-resolving models (GSRMs) use strongly refined horizontal grids compared with the climate models typically used in the Coupled Model Intercomparison Project (CMIP) but employ comparable vertical grid spacings. Here, we study how changes in the vertical grid spacing and adjustments to the integration time step affect the basic climate quantities simulated by the ICON-Sapphire atmospheric GSRM. Simulations are performed over a 45 d period for five different vertical grids with between 55 and 540 vertical layers and maximum tropospheric vertical grid spacings of between 800 and 50 m, respectively. The effects of changes in the vertical grid spacing are compared with the effects of reducing the horizontal grid spacing from 5 to 2.5 km. For most of the quantities considered, halving the vertical grid spacing has a smaller effect than halving the horizontal grid spacing, but it is not negligible. Each halving of the vertical grid spacing, along with the necessary reductions in time step length, increases cloud liquid water by about 7 %, compared with an approximate 16 % decrease for halving the horizontal grid spacing. The effect is due to both the vertical grid refinement and the time step reduction. There is no tendency toward convergence in the range of grid spacings tested here. The cloud ice amount also increases with a refinement in the vertical grid, but it is hardly affected by the time step length and does show a tendency to converge. While the effect on shortwave radiation is globally dominated by the altered reflection due to the change in the cloud liquid water content, the effect on longwave radiation is more difficult to interpret because changes in the cloud ice concentration and cloud fraction are anticorrelated in some regions. The simulations show that using a maximum tropospheric vertical grid spacing larger than 400 m would increase the truncation error strongly. Computing time investments in a further vertical grid refinement can affect the truncation errors of GSRMs similarly to comparable investments in horizontal refinement, because halving the vertical grid spacing is generally cheaper than halving the horizontal grid spacing. However, convergence of boundary layer cloud properties cannot be expected, even for the smallest maximum tropospheric grid spacing of 50 m used in this study.}, author = {Schmidt, Hauke and Rast, Sebastian and Bao, Jiawei and Cassim, Amrit and Fang, Shih Wei and Jimenez-De La Cuesta, Diego and Keil, Paul and Kluft, Lukas and Kroll, Clarissa and Lang, Theresa and Niemeier, Ulrike and Schneidereit, Andrea and Williams, Andrew I.L. and Stevens, Bjorn}, issn = {1991-9603}, journal = {Geoscientific Model Development}, number = {4}, pages = {1563--1584}, publisher = {European Geosciences Union}, title = {{Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model}}, doi = {10.5194/gmd-17-1563-2024}, volume = {17}, year = {2024}, } @article{12311, abstract = {In this note, we prove a formula for the cancellation exponent kv,n between division polynomials ψn and ϕn associated with a sequence {nP}n∈N of points on an elliptic curve E defined over a discrete valuation field K. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.}, author = {Naskręcki, Bartosz and Verzobio, Matteo}, issn = {1473-7124}, journal = {Proceedings of the Royal Society of Edinburgh Section A: Mathematics}, keywords = {Elliptic curves, Néron models, division polynomials, height functions, discrete valuation rings}, publisher = {Cambridge University Press}, title = {{Common valuations of division polynomials}}, doi = {10.1017/prm.2024.7}, year = {2024}, } @article{15099, abstract = {Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.}, author = {Johannesson, Kerstin and Faria, Rui and Le Moan, Alan and Rafajlović, Marina and Westram, Anja M and Butlin, Roger K. and Stankowski, Sean}, issn = {1362-4555}, journal = {Trends in Genetics}, publisher = {Cell Press}, title = {{Diverse pathways to speciation revealed by marine snails}}, doi = {10.1016/j.tig.2024.01.002}, year = {2024}, } @article{15098, abstract = {The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force.}, author = {Agresti, Antonio and Luongo, Eliseo}, issn = {1432-1807}, journal = {Mathematische Annalen}, publisher = {Springer Nature}, title = {{Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions}}, doi = {10.1007/s00208-024-02812-0}, year = {2024}, } @article{14843, abstract = {The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.}, author = {Chen, JingJing and Kaufmann, Walter and Chen, Chong and Arai, Itaru and Kim, Olena and Shigemoto, Ryuichi and Jonas, Peter M}, issn = {1097-4199}, journal = {Neuron}, publisher = {Elsevier}, title = {{Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse}}, doi = {10.1016/j.neuron.2023.12.002}, year = {2024}, } @phdthesis{15101, author = {Chen, JingJing}, issn = {2663 - 337X}, pages = {84}, publisher = {Institute of Science and Technology Austria}, title = {{Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse}}, doi = {10.15479/at:ista:15101}, year = {2024}, } @article{15122, abstract = {Quantum computers are increasing in size and quality but are still very noisy. Error mitigation extends the size of the quantum circuits that noisy devices can meaningfully execute. However, state-of-the-art error mitigation methods are hard to implement and the limited qubit connectivity in superconducting qubit devices restricts most applications to the hardware's native topology. Here we show a quantum approximate optimization algorithm (QAOA) on nonplanar random regular graphs with up to 40 nodes enabled by a machine learning-based error mitigation. We use a swap network with careful decision-variable-to-qubit mapping and a feed-forward neural network to optimize a depth-two QAOA on up to 40 qubits. We observe a meaningful parameter optimization for the largest graph which requires running quantum circuits with 958 two-qubit gates. Our paper emphasizes the need to mitigate samples, and not only expectation values, in quantum approximate optimization. These results are a step towards executing quantum approximate optimization at a scale that is not classically simulable. Reaching such system sizes is key to properly understanding the true potential of heuristic algorithms like QAOA.}, author = {Sack, Stefan and Egger, Daniel J.}, issn = {2643-1564}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation}}, doi = {10.1103/PhysRevResearch.6.013223}, volume = {6}, year = {2024}, } @article{15118, abstract = {Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.}, author = {Nußbaum, Phillip and Kureisaite-Ciziene, Danguole and Bellini, Dom and Van Der Does, Chris and Kojic, Marko and Taib, Najwa and Yeates, Anna and Tourte, Maxime and Gribaldo, Simonetta and Loose, Martin and Löwe, Jan and Albers, Sonja Verena}, issn = {2058-5276}, journal = {Nature Microbiology}, number = {3}, pages = {698--711}, publisher = {Springer Nature}, title = {{Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division}}, doi = {10.1038/s41564-024-01600-5}, volume = {9}, year = {2024}, } @article{15119, abstract = {In this paper we consider an SPDE where the leading term is a second order operator with periodic boundary conditions, coefficients which are measurable in (t,ω) , and Hölder continuous in space. Assuming stochastic parabolicity conditions, we prove Lp((0,T)×Ω,tκdt;Hσ,q(Td)) -estimates. The main novelty is that we do not require p=q . Moreover, we allow arbitrary σ∈R and weights in time. Such mixed regularity estimates play a crucial role in applications to nonlinear SPDEs which is clear from our previous work. To prove our main results we develop a general perturbation theory for SPDEs. Moreover, we prove a new result on pointwise multiplication in spaces with fractional smoothness.}, author = {Agresti, Antonio and Veraar, Mark}, issn = {0246-0203}, journal = {Annales de l'institut Henri Poincare Probability and Statistics}, number = {1}, pages = {413--430}, publisher = {Institute of Mathematical Statistics}, title = {{Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions}}, doi = {10.1214/22-AIHP1333}, volume = {60}, year = {2024}, } @article{14478, abstract = {Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungusMetarhizium robertsiiduring experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome – but no other – was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment betweenM. robertsiiand another congeneric insect pathogen,M. guizhouense. Hence horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The transferred accessory chromosome contains genes that might be involved in its preferential horizontal transfer, encoding putative histones and histone-modifying enzymes, but also putative virulence factors that may support its establishment. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.Significance StatementThe enormous success of bacterial pathogens has been attributed to their ability to exchange genetic material between one another. Similarly, in eukaryotes, horizontal transfer of genetic material allowed the spread of virulence factors across species. The horizontal transfer of whole chromosomes could be an important pathway for such exchange of genetic material, but little is known about the origin of transferable chromosomes and how frequently they are exchanged. Here, we show that the transfer of accessory chromosomes - chromosomes that are non-essential but may provide fitness benefits - is common during fungal co-infections and is even possible between distant pathogenic species, highlighting the importance of horizontal gene transfer via chromosome transfer also for the evolution and function of eukaryotic pathogens.}, author = {Habig, Michael and Grasse, Anna V and Müller, Judith and Stukenbrock, Eva H. and Leitner, Hanna and Cremer, Sylvia}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Frequent horizontal chromosome transfer between asexual fungal insect pathogens}}, doi = {10.1073/pnas.2316284121}, volume = {121}, year = {2024}, } @article{10045, abstract = {Given a fixed finite metric space (V,μ), the {\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs. }, author = {Dvorak, Martin and Kolmogorov, Vladimir}, issn = {1436-4646}, journal = {Mathematical Programming}, keywords = {minimum 0-extension problem, metric labeling problem, discrete metric spaces, metric extensions, computational complexity, valued constraint satisfaction problems, discrete convex analysis, L-convex functions}, publisher = {Springer Nature}, title = {{Generalized minimum 0-extension problem and discrete convexity}}, doi = {10.1007/s10107-024-02064-5}, year = {2024}, } @article{15121, abstract = {We present an auction algorithm using multiplicative instead of constant weight updates to compute a (1-E)-approximate maximum weight matching (MWM) in a bipartite graph with n vertices and m edges in time 0(mE-1), beating the running time of the fastest known approximation algorithm of Duan and Pettie [JACM ’14] that runs in 0(mE-1 log E-1). Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a (1-E)-approximate maximum weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided vertex insertions (with incident edges sorted by weight) to the other side. The total time time used is 0(mE-1), where m is the sum of the number of initially existing and inserted edges.}, author = {Zheng, Da Wei and Henzinger, Monika H}, issn = {1436-4646}, journal = {Mathematical Programming}, publisher = {Springer Nature}, title = {{Multiplicative auction algorithm for approximate maximum weight bipartite matching}}, doi = {10.1007/s10107-024-02066-3}, year = {2024}, } @article{15114, abstract = {As a key liquid organic hydrogen carrier, investigating the decomposition of formic acid (HCOOH) on the Pd (1 1 1) transition metal surface is imperative for harnessing hydrogen energy. Despite a multitude of studies, the major mechanisms and key intermediates involved in the dehydrogenation process of formic acid remain a great topic of debate due to ambiguous adsorbate interactions. In this research, we develop an advanced microkinetic model based on first-principles calculations, accounting for adsorbate–adsorbate interactions. Our study unveils a comprehensive mechanism for the Pd (1 1 1) surface, highlighting the significance of coverage effects in formic acid dehydrogenation. Our findings unequivocally demonstrate that H coverage on the Pd (1 1 1) surface renders formic acid more susceptible to decompose into H2 and CO2 through COOH intermediates. Consistent with experimental results, the selectivity of H2 in the decomposition of formic acid on the Pd (1 1 1) surface approaches 100 %. Considering the influence of H coverage, our kinetic analysis aligns perfectly with experimental values at a temperature of 373 K.}, author = {Yao, Zihao and Liu, Xu and Bunting, Rhys and Wang, Jianguo}, issn = {0009-2509}, journal = {Chemical Engineering Science}, publisher = {Elsevier}, title = {{Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling}}, doi = {10.1016/j.ces.2024.119959}, volume = {291}, year = {2024}, } @article{15116, abstract = {Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water–collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H2O/D2O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H2O and D2O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D2O than in H2O, and collagen in D2O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H2O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D2O is less hydrated than in H2O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen–water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.}, author = {Giubertoni, Giulia and Feng, Liru and Klein, Kevin and Giannetti, Guido and Rutten, Luco and Choi, Yeji and Van Der Net, Anouk and Castro-Linares, Gerard and Caporaletti, Federico and Micha, Dimitra and Hunger, Johannes and Deblais, Antoine and Bonn, Daniel and Sommerdijk, Nico and Šarić, Anđela and Ilie, Ioana M. and Koenderink, Gijsje H. and Woutersen, Sander}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration}}, doi = {10.1073/pnas.2313162121}, volume = {121}, year = {2024}, } @article{15117, abstract = {The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and “flash-and-freeze” electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.}, author = {Vandael, David H and Jonas, Peter M}, issn = {1095-9203}, journal = {Science}, number = {6687}, pages = {eadg6757}, publisher = {AAAS}, title = {{Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal}}, doi = {10.1126/science.adg6757}, volume = {383}, year = {2024}, } @phdthesis{15094, abstract = {Point sets, geometric networks, and arrangements of hyperplanes are fundamental objects in discrete geometry that have captivated mathematicians for centuries, if not millennia. This thesis seeks to cast new light on these structures by illustrating specific instances where a topological perspective, specifically through discrete Morse theory and persistent homology, provides valuable insights. At first glance, the topology of these geometric objects might seem uneventful: point sets essentially lack of topology, arrangements of hyperplanes are a decomposition of Rd, which is a contractible space, and the topology of a network primarily involves the enumeration of connected components and cycles within the network. However, beneath this apparent simplicity, there lies an array of intriguing structures, a small subset of which will be uncovered in this thesis. Focused on three case studies, each addressing one of the mentioned objects, this work will showcase connections that intertwine topology with diverse fields such as combinatorial geometry, algorithms and data structures, and emerging applications like spatial biology. }, author = {Cultrera di Montesano, Sebastiano}, issn = {2663 - 337X}, pages = {108}, publisher = {Institute of Science and Technology Austria}, title = {{Persistence and Morse theory for discrete geometric structures}}, doi = {10.15479/at:ista:15094}, year = {2024}, } @inproceedings{15093, abstract = {We present a dynamic data structure for maintaining the persistent homology of a time series of real numbers. The data structure supports local operations, including the insertion and deletion of an item and the cutting and concatenating of lists, each in time O(log n + k), in which n counts the critical items and k the changes in the augmented persistence diagram. To achieve this, we design a tailor-made tree structure with an unconventional representation, referred to as banana tree, which may be useful in its own right.}, author = {Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Henzinger, Monika H and Ost, Lara}, booktitle = {Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)}, editor = {Woodruff, David P.}, location = {Alexandria, VA, USA}, pages = {243 -- 295}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Dynamically maintaining the persistent homology of time series}}, doi = {10.1137/1.9781611977912.11}, year = {2024}, } @unpublished{15091, abstract = {Motivated by applications in the medical sciences, we study finite chromatic sets in Euclidean space from a topological perspective. Based on the persistent homology for images, kernels and cokernels, we design provably stable homological quantifiers that describe the geometric micro- and macro-structure of how the color classes mingle. These can be efficiently computed using chromatic variants of Delaunay and alpha complexes, and code that does these computations is provided.}, author = {Cultrera di Montesano, Sebastiano and Draganov, Ondrej and Edelsbrunner, Herbert and Saghafian, Morteza}, booktitle = {arXiv}, title = {{Chromatic alpha complexes}}, year = {2024}, } @article{15171, abstract = {The brain’s functionality is developed and maintained through synaptic plasticity. As synapses undergo plasticity, they also affect each other. The nature of such ‘co-dependency’ is difficult to disentangle experimentally, because multiple synapses must be monitored simultaneously. To help understand the experimentally observed phenomena, we introduce a framework that formalizes synaptic co-dependency between different connection types. The resulting model explains how inhibition can gate excitatory plasticity while neighboring excitatory–excitatory interactions determine the strength of long-term potentiation. Furthermore, we show how the interplay between excitatory and inhibitory synapses can account for the quick rise and long-term stability of a variety of synaptic weight profiles, such as orientation tuning and dendritic clustering of co-active synapses. In recurrent neuronal networks, co-dependent plasticity produces rich and stable motor cortex-like dynamics with high input sensitivity. Our results suggest an essential role for the neighborly synaptic interaction during learning, connecting micro-level physiology with network-wide phenomena.}, author = {Agnes, Everton J. and Vogels, Tim P}, issn = {1546-1726}, journal = {Nature Neuroscience}, publisher = {Springer Nature}, title = {{Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks}}, doi = {10.1038/s41593-024-01597-4}, year = {2024}, }