@article{5996, abstract = {In pipes, turbulence sets in despite the linear stability of the laminar Hagen–Poiseuille flow. The Reynolds number ( ) for which turbulence first appears in a given experiment – the ‘natural transition point’ – depends on imperfections of the set-up, or, more precisely, on the magnitude of finite amplitude perturbations. At onset, turbulence typically only occupies a certain fraction of the flow, and this fraction equally is found to differ from experiment to experiment. Despite these findings, Reynolds proposed that after sufficiently long times, flows may settle to steady conditions: below a critical velocity, flows should (regardless of initial conditions) always return to laminar, while above this velocity, eddying motion should persist. As will be shown, even in pipes several thousand diameters long, the spatio-temporal intermittent flow patterns observed at the end of the pipe strongly depend on the initial conditions, and there is no indication that different flow patterns would eventually settle to a (statistical) steady state. Exploiting the fact that turbulent puffs do not age (i.e. they are memoryless), we continuously recreate the puff sequence exiting the pipe at the pipe entrance, and in doing so introduce periodic boundary conditions for the puff pattern. This procedure allows us to study the evolution of the flow patterns for arbitrary long times, and we find that after times in excess of advective time units, indeed a statistical steady state is reached. Although the resulting flows remain spatio-temporally intermittent, puff splitting and decay rates eventually reach a balance, so that the turbulent fraction fluctuates around a well-defined level which only depends on . In accordance with Reynolds’ proposition, we find that at lower (here 2020), flows eventually always resume to laminar, while for higher ( ), turbulence persists. The critical point for pipe flow hence falls in the interval of $2020 , which is in very good agreement with the recently proposed value of . The latter estimate was based on single-puff statistics and entirely neglected puff interactions. Unlike in typical contact processes where such interactions strongly affect the percolation threshold, in pipe flow, the critical point is only marginally influenced. Interactions, on the other hand, are responsible for the approach to the statistical steady state. As shown, they strongly affect the resulting flow patterns, where they cause ‘puff clustering’, and these regions of large puff densities are observed to travel across the puff pattern in a wave-like fashion.}, author = {Vasudevan, Mukund and Hof, Björn}, issn = {1469-7645}, journal = {Journal of Fluid Mechanics}, pages = {76--94}, publisher = {Cambridge University Press}, title = {{The critical point of the transition to turbulence in pipe flow}}, doi = {10.1017/jfm.2017.923}, volume = {839}, year = {2018}, } @article{5993, abstract = {In this article, we consider the termination problem of probabilistic programs with real-valued variables. Thequestions concerned are: qualitative ones that ask (i) whether the program terminates with probability 1(almost-sure termination) and (ii) whether the expected termination time is finite (finite termination); andquantitative ones that ask (i) to approximate the expected termination time (expectation problem) and (ii) tocompute a boundBsuch that the probability not to terminate afterBsteps decreases exponentially (con-centration problem). To solve these questions, we utilize the notion of ranking supermartingales, which isa powerful approach for proving termination of probabilistic programs. In detail, we focus on algorithmicsynthesis of linear ranking-supermartingales over affine probabilistic programs (Apps) with both angelic anddemonic non-determinism. An important subclass of Apps is LRApp which is defined as the class of all Appsover which a linear ranking-supermartingale exists.Our main contributions are as follows. Firstly, we show that the membership problem of LRApp (i) canbe decided in polynomial time for Apps with at most demonic non-determinism, and (ii) isNP-hard and inPSPACEfor Apps with angelic non-determinism. Moreover, theNP-hardness result holds already for Appswithout probability and demonic non-determinism. Secondly, we show that the concentration problem overLRApp can be solved in the same complexity as for the membership problem of LRApp. Finally, we show thatthe expectation problem over LRApp can be solved in2EXPTIMEand isPSPACE-hard even for Apps withoutprobability and non-determinism (i.e., deterministic programs). Our experimental results demonstrate theeffectiveness of our approach to answer the qualitative and quantitative questions over Apps with at mostdemonic non-determinism.}, author = {Chatterjee, Krishnendu and Fu, Hongfei and Novotný, Petr and Hasheminezhad, Rouzbeh}, issn = {0164-0925}, journal = {ACM Transactions on Programming Languages and Systems}, number = {2}, publisher = {Association for Computing Machinery (ACM)}, title = {{Algorithmic analysis of qualitative and quantitative termination problems for affine probabilistic programs}}, doi = {10.1145/3174800}, volume = {40}, year = {2018}, } @article{5999, abstract = {We introduce for each quiver Q and each algebraic oriented cohomology theory A, the cohomological Hall algebra (CoHA) of Q, as the A-homology of the moduli of representations of the preprojective algebra of Q. This generalizes the K-theoretic Hall algebra of commuting varieties defined by Schiffmann-Vasserot. When A is the Morava K-theory, we show evidence that this algebra is a candidate for Lusztig's reformulated conjecture on modular representations of algebraic groups. We construct an action of the preprojective CoHA on the A-homology of Nakajima quiver varieties. We compare this with the action of the Borel subalgebra of Yangian when A is the intersection theory. We also give a shuffle algebra description of this CoHA in terms of the underlying formal group law of A. As applications, we obtain a shuffle description of the Yangian. }, author = {Yang, Yaping and Zhao, Gufang}, issn = {0024-6115}, journal = {Proceedings of the London Mathematical Society}, number = {5}, pages = {1029--1074}, publisher = {Oxford University Press}, title = {{The cohomological Hall algebra of a preprojective algebra}}, doi = {10.1112/plms.12111}, volume = {116}, year = {2018}, } @article{5989, abstract = {Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million people worldwide.Additionally to their major impact on human health, they are also models of choice in evolutionary biology. These parasitic flatwormsare unique among the common hermaphroditic trematodes as they have separate sexes. This so-called “evolutionary scandal”displays a female heterogametic genetic sex-determination system (ZZ males and ZW females), as well as a pronounced adult sexualdimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocussexual conflicts. To resolve these conflicts in sexually selected traits, molecular mechanisms such as sex-biased gene expression couldoccur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the latter mechanism, that is,genes expressed preferentially from either the maternal or the paternal allele, inSchistosoma mansonispecies. To this end, tran-scriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide poly-morphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parentalexpression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistentwith paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, theremaining SNPs found in male and female transcriptomes were situated in genes that have the potential to explain sexual differencesin schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds.}, author = {Kincaid-Smith, Julien and Picard, Marion A L and Cosseau, Céline and Boissier, Jérôme and Severac, Dany and Grunau, Christoph and Toulza, Eve}, issn = {1759-6653}, journal = {Genome Biology and Evolution}, number = {3}, pages = {840--856}, publisher = {Oxford University Press}, title = {{Parent-of-Origin-Dependent Gene Expression in Male and Female Schistosome Parasites}}, doi = {10.1093/gbe/evy037}, volume = {10}, year = {2018}, } @inproceedings{6031, abstract = {We introduce Clover, a new library for efficient computation using low-precision data, providing mathematical routines required by fundamental methods in optimization and sparse recovery. Our library faithfully implements variants of stochastic quantization that guarantee convergence at low precision, and supports data formats from 4-bit quantized to 32-bit IEEE-754 on current Intel processors. In particular, we show that 4-bit can be implemented efficiently using Intel AVX despite the lack of native support for this data format. Experimental results with dot product, matrix-vector multiplication (MVM), gradient descent (GD), and iterative hard thresholding (IHT) demonstrate that the attainable speedups are in many cases close to linear with respect to the reduction of precision due to reduced data movement. Finally, for GD and IHT, we show examples of absolute speedup achieved by 4-bit versus 32-bit, by iterating until a given target error is achieved.}, author = {Stojanov, Alen and Smith, Tyler Michael and Alistarh, Dan-Adrian and Puschel, Markus}, booktitle = {2018 IEEE International Workshop on Signal Processing Systems}, location = {Cape Town, South Africa}, publisher = {IEEE}, title = {{Fast quantized arithmetic on x86: Trading compute for data movement}}, doi = {10.1109/SiPS.2018.8598402}, volume = {2018-October}, year = {2018}, } @inproceedings{25, abstract = {Partially observable Markov decision processes (POMDPs) are the standard models for planning under uncertainty with both finite and infinite horizon. Besides the well-known discounted-sum objective, indefinite-horizon objective (aka Goal-POMDPs) is another classical objective for POMDPs. In this case, given a set of target states and a positive cost for each transition, the optimization objective is to minimize the expected total cost until a target state is reached. In the literature, RTDP-Bel or heuristic search value iteration (HSVI) have been used for solving Goal-POMDPs. Neither of these algorithms has theoretical convergence guarantees, and HSVI may even fail to terminate its trials. We give the following contributions: (1) We discuss the challenges introduced in Goal-POMDPs and illustrate how they prevent the original HSVI from converging. (2) We present a novel algorithm inspired by HSVI, termed Goal-HSVI, and show that our algorithm has convergence guarantees. (3) We show that Goal-HSVI outperforms RTDP-Bel on a set of well-known examples.}, author = {Horák, Karel and Bošanský, Branislav and Chatterjee, Krishnendu}, booktitle = {Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence}, location = {Stockholm, Sweden}, pages = {4764 -- 4770}, publisher = {IJCAI}, title = {{Goal-HSVI: Heuristic search value iteration for goal-POMDPs}}, doi = {10.24963/ijcai.2018/662}, volume = {2018-July}, year = {2018}, } @inproceedings{24, abstract = {Partially-observable Markov decision processes (POMDPs) with discounted-sum payoff are a standard framework to model a wide range of problems related to decision making under uncertainty. Traditionally, the goal has been to obtain policies that optimize the expectation of the discounted-sum payoff. A key drawback of the expectation measure is that even low probability events with extreme payoff can significantly affect the expectation, and thus the obtained policies are not necessarily risk-averse. An alternate approach is to optimize the probability that the payoff is above a certain threshold, which allows obtaining risk-averse policies, but ignores optimization of the expectation. We consider the expectation optimization with probabilistic guarantee (EOPG) problem, where the goal is to optimize the expectation ensuring that the payoff is above a given threshold with at least a specified probability. We present several results on the EOPG problem, including the first algorithm to solve it.}, author = {Chatterjee, Krishnendu and Elgyütt, Adrian and Novotny, Petr and Rouillé, Owen}, location = {Stockholm, Sweden}, pages = {4692 -- 4699}, publisher = {IJCAI}, title = {{Expectation optimization with probabilistic guarantees in POMDPs with discounted-sum objectives}}, doi = {10.24963/ijcai.2018/652}, volume = {2018}, year = {2018}, } @inproceedings{34, abstract = {Partially observable Markov decision processes (POMDPs) are widely used in probabilistic planning problems in which an agent interacts with an environment using noisy and imprecise sensors. We study a setting in which the sensors are only partially defined and the goal is to synthesize “weakest” additional sensors, such that in the resulting POMDP, there is a small-memory policy for the agent that almost-surely (with probability 1) satisfies a reachability objective. We show that the problem is NP-complete, and present a symbolic algorithm by encoding the problem into SAT instances. We illustrate trade-offs between the amount of memory of the policy and the number of additional sensors on a simple example. We have implemented our approach and consider three classical POMDP examples from the literature, and show that in all the examples the number of sensors can be significantly decreased (as compared to the existing solutions in the literature) without increasing the complexity of the policies.}, author = {Chatterjee, Krishnendu and Chemlík, Martin and Topcu, Ufuk}, location = {Delft, Netherlands}, pages = {47 -- 55}, publisher = {AAAI Press}, title = {{Sensor synthesis for POMDPs with reachability objectives}}, volume = {2018}, year = {2018}, } @article{18, abstract = {An N-superconcentrator is a directed, acyclic graph with N input nodes and N output nodes such that every subset of the inputs and every subset of the outputs of same cardinality can be connected by node-disjoint paths. It is known that linear-size and bounded-degree superconcentrators exist. We prove the existence of such superconcentrators with asymptotic density 25.3 (where the density is the number of edges divided by N). The previously best known densities were 28 [12] and 27.4136 [17].}, author = {Kolmogorov, Vladimir and Rolinek, Michal}, issn = {0381-7032}, journal = {Ars Combinatoria}, number = {10}, pages = {269 -- 304}, publisher = {Charles Babbage Research Centre}, title = {{Superconcentrators of density 25.3}}, volume = {141}, year = {2018}, } @article{6355, abstract = {We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.}, author = {Akopyan, Arseniy and Avvakumov, Sergey}, issn = {2050-5094}, journal = {Forum of Mathematics, Sigma}, publisher = {Cambridge University Press}, title = {{Any cyclic quadrilateral can be inscribed in any closed convex smooth curve}}, doi = {10.1017/fms.2018.7}, volume = {6}, year = {2018}, } @inproceedings{6195, abstract = {In the context of robotic manipulation and grasping, the shift from a view that is static (force closure of a single posture) and contact-deprived (only contact for force closure is allowed, everything else is obstacle) towards a view that is dynamic and contact-rich (soft manipulation) has led to an increased interest in soft hands. These hands can easily exploit environmental constraints and object surfaces without risk, and safely interact with humans, but present also some challenges. Designing them is difficult, as well as predicting, modelling, and “programming” their interactions with the objects and the environment. This paper tackles the problem of simulating them in a fast and effective way, leveraging on novel and existing simulation technologies. We present a triple-layered simulation framework where dynamic properties such as stiffness are determined from slow but accurate FEM simulation data once, and then condensed into a lumped parameter model that can be used to fast simulate soft fingers and soft hands. We apply our approach to the simulation of soft pneumatic fingers.}, author = {Pozzi, Maria and Miguel Villalba, Eder and Deimel, Raphael and Malvezzi, Monica and Bickel, Bernd and Brock, Oliver and Prattichizzo, Domenico}, isbn = {9781538630815}, location = {Brisbane, Australia}, publisher = {IEEE}, title = {{Efficient FEM-based simulation of soft robots modeled as kinematic chains}}, doi = {10.1109/icra.2018.8461106}, year = {2018}, } @inproceedings{6941, abstract = {Bitcoin has become the most successful cryptocurrency ever deployed, and its most distinctive feature is that it is decentralized. Its underlying protocol (Nakamoto consensus) achieves this by using proof of work, which has the drawback that it causes the consumption of vast amounts of energy to maintain the ledger. Moreover, Bitcoin mining dynamics have become less distributed over time. Towards addressing these issues, we propose SpaceMint, a cryptocurrency based on proofs of space instead of proofs of work. Miners in SpaceMint dedicate disk space rather than computation. We argue that SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most notably, its large energy consumption. SpaceMint also rewards smaller miners fairly according to their contribution to the network, thus incentivizing more distributed participation. This paper adapts proof of space to enable its use in cryptocurrency, studies the attacks that can arise against a Bitcoin-like blockchain that uses proof of space, and proposes a new blockchain format and transaction types to address these attacks. Our prototype shows that initializing 1 TB for mining takes about a day (a one-off setup cost), and miners spend on average just a fraction of a second per block mined. Finally, we provide a game-theoretic analysis modeling SpaceMint as an extensive game (the canonical game-theoretic notion for games that take place over time) and show that this stylized game satisfies a strong equilibrium notion, thereby arguing for SpaceMint ’s stability and consensus.}, author = {Park, Sunoo and Kwon, Albert and Fuchsbauer, Georg and Gazi, Peter and Alwen, Joel F and Pietrzak, Krzysztof Z}, booktitle = {22nd International Conference on Financial Cryptography and Data Security}, isbn = {9783662583869}, issn = {1611-3349}, location = {Nieuwpoort, Curacao}, pages = {480--499}, publisher = {Springer Nature}, title = {{SpaceMint: A cryptocurrency based on proofs of space}}, doi = {10.1007/978-3-662-58387-6_26}, volume = {10957}, year = {2018}, } @article{6497, abstract = {T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations.}, author = {Moalli, Federica and Ficht, Xenia and Germann, Philipp and Vladymyrov, Mykhailo and Stolp, Bettina and de Vries, Ingrid and Lyck, Ruth and Balmer, Jasmin and Fiocchi, Amleto and Kreutzfeldt, Mario and Merkler, Doron and Iannacone, Matteo and Ariga, Akitaka and Stoffel, Michael H. and Sharpe, James and Bähler, Martin and Sixt, Michael K and Diz-Muñoz, Alba and Stein, Jens V.}, issn = {1540-9538}, journal = {The Journal of Experimental Medicine}, number = {7}, pages = {1869–1890}, publisher = {Rockefeller University Press}, title = {{The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells}}, doi = {10.1084/jem.20170896}, volume = {2015}, year = {2018}, } @article{6499, abstract = {Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge.}, author = {Truckenbrodt, Sven M and Maidorn, Manuel and Crzan, Dagmar and Wildhagen, Hanna and Kabatas, Selda and Rizzoli, Silvio O}, issn = {1469-3178}, journal = {EMBO reports}, number = {9}, publisher = {EMBO}, title = {{X10 expansion microscopy enables 25‐nm resolution on conventional microscopes}}, doi = {10.15252/embr.201845836}, volume = {19}, year = {2018}, } @inproceedings{7123, abstract = {Population protocols are a popular model of distributed computing, in which n agents with limited local state interact randomly, and cooperate to collectively compute global predicates. Inspired by recent developments in DNA programming, an extensive series of papers, across different communities, has examined the computability and complexity characteristics of this model. Majority, or consensus, is a central task in this model, in which agents need to collectively reach a decision as to which one of two states A or B had a higher initial count. Two metrics are important: the time that a protocol requires to stabilize to an output decision, and the state space size that each agent requires to do so. It is known that majority requires Ω(log log n) states per agent to allow for fast (poly-logarithmic time) stabilization, and that O(log2 n) states are sufficient. Thus, there is an exponential gap between the space upper and lower bounds for this problem. This paper addresses this question. On the negative side, we provide a new lower bound of Ω(log n) states for any protocol which stabilizes in O(n1–c) expected time, for any constant c > 0. This result is conditional on monotonicity and output assumptions, satisfied by all known protocols. Technically, it represents a departure from previous lower bounds, in that it does not rely on the existence of dense configurations. Instead, we introduce a new generalized surgery technique to prove the existence of incorrect executions for any algorithm which would contradict the lower bound. Subsequently, our lower bound also applies to general initial configurations, including ones with a leader. On the positive side, we give a new algorithm for majority which uses O(log n) states, and stabilizes in O(log2 n) expected time. Central to the algorithm is a new leaderless phase clock technique, which allows agents to synchronize in phases of Θ(n log n) consecutive interactions using O(log n) states per agent, exploiting a new connection between population protocols and power-of-two-choices load balancing mechanisms. We also employ our phase clock to build a leader election algorithm with a state space of size O(log n), which stabilizes in O(log2 n) expected time.}, author = {Alistarh, Dan-Adrian and Aspnes, James and Gelashvili, Rati}, booktitle = {Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {9781611975031}, location = {New Orleans, LA, United States}, pages = {2221--2239}, publisher = {ACM}, title = {{Space-optimal majority in population protocols}}, doi = {10.1137/1.9781611975031.144}, year = {2018}, } @article{9917, abstract = {Adaptive divergence and speciation may happen despite opposition by gene flow. Identifying the genomic basis underlying divergence with gene flow is a major task in evolutionary genomics. Most approaches (e.g., outlier scans) focus on genomic regions of high differentiation. However, not all genomic architectures potentially underlying divergence are expected to show extreme differentiation. Here, we develop an approach that combines hybrid zone analysis (i.e., focuses on spatial patterns of allele frequency change) with system-specific simulations to identify loci inconsistent with neutral evolution. We apply this to a genome-wide SNP set from an ideally suited study organism, the intertidal snail Littorina saxatilis, which shows primary divergence between ecotypes associated with different shore habitats. We detect many SNPs with clinal patterns, most of which are consistent with neutrality. Among non-neutral SNPs, most are located within three large putative inversions differentiating ecotypes. Many non-neutral SNPs show relatively low levels of differentiation. We discuss potential reasons for this pattern, including loose linkage to selected variants, polygenic adaptation and a component of balancing selection within populations (which may be expected for inversions). Our work is in line with theory predicting a role for inversions in divergence, and emphasizes that genomic regions contributing to divergence may not always be accessible with methods purely based on allele frequency differences. These conclusions call for approaches that take spatial patterns of allele frequency change into account in other systems.}, author = {Westram, Anja M and Rafajlović, Marina and Chaube, Pragya and Faria, Rui and Larsson, Tomas and Panova, Marina and Ravinet, Mark and Blomberg, Anders and Mehlig, Bernhard and Johannesson, Kerstin and Butlin, Roger}, issn = {2056-3744}, journal = {Evolution Letters}, number = {4}, pages = {297--309}, publisher = {Wiley}, title = {{Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow}}, doi = {10.1002/evl3.74}, volume = {2}, year = {2018}, } @article{9915, abstract = {The evolution of assortative mating is a key part of the speciation process. Stronger assortment, or greater divergence in mating traits, between species pairs with overlapping ranges is commonly observed, but possible causes of this pattern of reproductive character displacement are difficult to distinguish. We use a multidisciplinary approach to provide a rare example where it is possible to distinguish among hypotheses concerning the evolution of reproductive character displacement. We build on an earlier comparative analysis that illustrated a strong pattern of greater divergence in penis form between pairs of sister species with overlapping ranges than between allopatric sister-species pairs, in a large clade of marine gastropods (Littorinidae). We investigate both assortative mating and divergence in male genitalia in one of the sister-species pairs, discriminating among three contrasting processes each of which can generate a pattern of reproductive character displacement: reinforcement, reproductive interference and the Templeton effect. We demonstrate reproductive character displacement in assortative mating, but not in genital form between this pair of sister species and use demographic models to distinguish among the different processes. Our results support a model with no gene flow since secondary contact and thus favor reproductive interference as the cause of reproductive character displacement for mate choice, rather than reinforcement. High gene flow within species argues against the Templeton effect. Secondary contact appears to have had little impact on genital divergence.}, author = {Hollander, Johan and Montaño-Rendón, Mauricio and Bianco, Giuseppe and Yang, Xi and Westram, Anja M and Duvaux, Ludovic and Reid, David G. and Butlin, Roger K.}, issn = {2056-3744}, journal = {Evolution Letters}, number = {6}, pages = {557--566}, publisher = {Wiley}, title = {{Are assortative mating and genital divergence driven by reinforcement?}}, doi = {10.1002/evl3.85}, volume = {2}, year = {2018}, } @article{8618, abstract = {The reversibly switchable fluorescent proteins (RSFPs) commonly used for RESOLFT nanoscopy have been developed from fluorescent proteins of the GFP superfamily. These proteins are bright, but exhibit several drawbacks such as relatively large size, oxygen-dependence, sensitivity to low pH, and limited switching speed. Therefore, RSFPs from other origins with improved properties need to be explored. Here, we report the development of two RSFPs based on the LOV domain of the photoreceptor protein YtvA from Bacillus subtilis. LOV domains obtain their fluorescence by association with the abundant cellular cofactor flavin mononucleotide (FMN). Under illumination with blue and ultraviolet light, they undergo a photocycle, making these proteins inherently photoswitchable. Our first improved variant, rsLOV1, can be used for RESOLFT imaging, whereas rsLOV2 proved useful for STED nanoscopy of living cells with a resolution of down to 50 nm. In addition to their smaller size compared to GFP-related proteins (17 kDa instead of 27 kDa) and their usability at low pH, rsLOV1 and rsLOV2 exhibit faster switching kinetics, switching on and off 3 times faster than rsEGFP2, the fastest-switching RSFP reported to date. Therefore, LOV-domain-based RSFPs have potential for applications where the switching speed of GFP-based proteins is limiting.}, author = {Gregor, Carola and Sidenstein, Sven C. and Andresen, Martin and Sahl, Steffen J. and Danzl, Johann G and Hell, Stefan W.}, issn = {2045-2322}, journal = {Scientific Reports}, keywords = {Multidisciplinary}, publisher = {Springer Nature}, title = {{Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA}}, doi = {10.1038/s41598-018-19947-1}, volume = {8}, year = {2018}, } @article{10881, abstract = {Strigolactones (SLs) are a relatively recent addition to the list of plant hormones that control different aspects of plant development. SL signalling is perceived by an α/β hydrolase, DWARF 14 (D14). A close homolog of D14, KARRIKIN INSENSTIVE2 (KAI2), is involved in perception of an uncharacterized molecule called karrikin (KAR). Recent studies in Arabidopsis identified the SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE 7 (SMXL7) to be potential SCF–MAX2 complex-mediated proteasome targets of KAI2 and D14, respectively. Genetic studies on SMXL7 and SMAX1 demonstrated distinct developmental roles for each, but very little is known about these repressors in terms of their sequence features. In this study, we performed an extensive comparative analysis of SMXLs and determined their phylogenetic and evolutionary history in the plant lineage. Our results show that SMXL family members can be sub-divided into four distinct phylogenetic clades/classes, with an ancient SMAX1. Further, we identified the clade-specific motifs that have evolved and that might act as determinants of SL-KAR signalling specificity. These specificities resulted from functional diversities among the clades. Our results suggest that a gradual co-evolution of SMXL members with their upstream receptors D14/KAI2 provided an increased specificity to both the SL perception and response in land plants.}, author = {Moturu, Taraka Ramji and Thula, Sravankumar and Singh, Ravi Kumar and Nodzyński, Tomasz and Vařeková, Radka Svobodová and Friml, Jiří and Simon, Sibu}, issn = {1460-2431}, journal = {Journal of Experimental Botany}, keywords = {Plant Science, Physiology}, number = {9}, pages = {2367--2378}, publisher = {Oxford University Press}, title = {{Molecular evolution and diversification of the SMXL gene family}}, doi = {10.1093/jxb/ery097}, volume = {69}, year = {2018}, } @article{10880, abstract = {Acquisition of evolutionary novelties is a fundamental process for adapting to the external environment and invading new niches and results in the diversification of life, which we can see in the world today. How such novel phenotypic traits are acquired in the course of evolution and are built up in developing embryos has been a central question in biology. Whole-genome duplication (WGD) is a process of genome doubling that supplies raw genetic materials and increases genome complexity. Recently, it has been gradually revealed that WGD and subsequent fate changes of duplicated genes can facilitate phenotypic evolution. Here, we review the current understanding of the relationship between WGD and the acquisition of evolutionary novelties. We show some examples of this link and discuss how WGD and subsequent duplicated genes can facilitate phenotypic evolution as well as when such genomic doubling can be advantageous for adaptation.}, author = {Yuuta, Moriyama and Koshiba-Takeuchi, Kazuko}, issn = {2041-2657}, journal = {Briefings in Functional Genomics}, keywords = {Genetics, Molecular Biology, Biochemistry, General Medicine}, number = {5}, pages = {329--338}, publisher = {Oxford University Press}, title = {{Significance of whole-genome duplications on the emergence of evolutionary novelties}}, doi = {10.1093/bfgp/ely007}, volume = {17}, year = {2018}, }