@inproceedings{2159,
abstract = {Motivated by topological Tverberg-type problems, we consider multiple (double, triple, and higher multiplicity) selfintersection points of maps from finite simplicial complexes (compact polyhedra) into ℝd and study conditions under which such multiple points can be eliminated. The most classical case is that of embeddings (i.e., maps without double points) of a κ-dimensional complex K into ℝ2κ. For this problem, the work of van Kampen, Shapiro, and Wu provides an efficiently testable necessary condition for embeddability (namely, vanishing of the van Kampen ob-struction). For κ ≥ 3, the condition is also sufficient, and yields a polynomial-time algorithm for deciding embeddability: One starts with an arbitrary map f : K→ℝ2κ, which generically has finitely many double points; if k ≥ 3 and if the obstruction vanishes then one can successively remove these double points by local modifications of the map f. One of the main tools is the famous Whitney trick that permits eliminating pairs of double points of opposite intersection sign. We are interested in generalizing this approach to intersection points of higher multiplicity. We call a point y 2 ℝd an r-fold Tverberg point of a map f : Kκ →ℝd if y lies in the intersection f(σ1)∩. ∩f(σr) of the images of r pairwise disjoint simplices of K. The analogue of (non-)embeddability that we study is the problem Tverbergκ r→d: Given a κ-dimensional complex K, does it satisfy a Tverberg-type theorem with parameters r and d, i.e., does every map f : K κ → ℝd have an r-fold Tverberg point? Here, we show that for fixed r, κ and d of the form d = rm and k = (r-1)m, m ≥ 3, there is a polynomial-time algorithm for deciding this (based on the vanishing of a cohomological obstruction, as in the case of embeddings). Our main tool is an r-fold analogue of the Whitney trick: Given r pairwise disjoint simplices of K such that the intersection of their images contains two r-fold Tverberg points y+ and y- of opposite intersection sign, we can eliminate y+ and y- by a local isotopy of f. In a subsequent paper, we plan to develop this further and present a generalization of the classical Haeiger-Weber Theorem (which yields a necessary and sufficient condition for embeddability of κ-complexes into ℝd for a wider range of dimensions) to intersection points of higher multiplicity.},
author = {Mabillard, Isaac and Wagner, Uli},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {171 -- 180},
publisher = {ACM},
title = {{Eliminating Tverberg points, I. An analogue of the Whitney trick}},
doi = {10.1145/2582112.2582134},
year = {2014},
}
@article{2023,
abstract = {Understanding the evolution of dispersal is essential for understanding and predicting the dynamics of natural populations. Two main factors are known to influence dispersal evolution: spatio-temporal variation in the environment and relatedness between individuals. However, the relation between these factors is still poorly understood, and they are usually treated separately. In this article, I present a theoretical framework that contains and connects effects of both environmental variation and relatedness, and reproduces and extends their known features. Spatial habitat variation selects for balanced dispersal strategies, whereby the population is kept at an ideal free distribution. Within this class of dispersal strategies, I explain how increased dispersal is promoted by perturbations to the dispersal type frequencies. An explicit formula shows the magnitude of the selective advantage of increased dispersal in terms of the spatial variability in the frequencies of the different dispersal strategies present. These variances are capable of capturing various sources of stochasticity and hence establish a common scale for their effects on the evolution of dispersal. The results furthermore indicate an alternative approach to identifying effects of relatedness on dispersal evolution.},
author = {Novak, Sebastian},
journal = {Ecology and Evolution},
number = {24},
pages = {4589 -- 4597},
publisher = {Wiley-Blackwell},
title = {{Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution}},
doi = {10.1002/ece3.1289},
volume = {4},
year = {2014},
}
@article{1913,
abstract = {Deposits of phosphorylated tau protein and convergence of pathology in the hippocampus are the hallmarks of neurodegenerative tauopathies. Thus we aimed to evaluate whether regional and cellular vulnerability patterns in the hippocampus distinguish tauopathies or are influenced by their concomitant presence. Methods: We created a heat map of phospho-tau (AT8) immunoreactivity patterns in 24 hippocampal subregions/layers in individuals with Alzheimer's disease (AD)-related neurofibrillary degeneration (n = 40), Pick's disease (n = 8), progressive supranuclear palsy (n = 7), corticobasal degeneration (n = 6), argyrophilic grain disease (AGD, n = 18), globular glial tauopathy (n = 5), and tau-astrogliopathy of the elderly (n = 10). AT8 immunoreactivity patterns were compared by mathematical analysis. Results: Our study reveals disease-specific hot spots and regional selective vulnerability for these disorders. The pattern of hippocampal AD-related tau pathology is strongly influenced by concomitant AGD. Mathematical analysis reveals that hippocampal involvement in primary tauopathies is distinguishable from early-stage AD-related neurofibrillary degeneration. Conclusion: Our data demonstrate disease-specific AT8 immunoreactivity patterns and hot spots in the hippocampus even in tauopathies, which primarily do not affect the hippocampus. These hot spots can be shifted to other regions by the co-occurrence of tauopathies like AGD. Our observations support the notion that globular glial tauopathies and tau-astrogliopathy of the elderly are distinct entities.},
author = {Milenković, Ivan and Petrov, Tatjana and Kovács, Gábor},
journal = {Dementia and Geriatric Cognitive Disorders},
number = {5-6},
pages = {375 -- 388},
publisher = {Karger},
title = {{Patterns of hippocampal tau pathology differentiate neurodegenerative dementias}},
doi = {10.1159/000365548},
volume = {38},
year = {2014},
}
@article{1999,
abstract = {Selection for disease control is believed to have contributed to shape the organisation of insect societies — leading to interaction patterns that mitigate disease transmission risk within colonies, conferring them ‘organisational immunity’. Recent studies combining epidemiological models with social network analysis have identified general properties of interaction networks that may hinder propagation of infection within groups. These can be prophylactic and/or induced upon pathogen exposure. Here we review empirical evidence for these two types of organisational immunity in social insects and describe the individual-level behaviours that underlie it. We highlight areas requiring further investigation, and emphasise the need for tighter links between theory and empirical research and between individual-level and collective-level analyses.},
author = {Stroeymeyt, Nathalie and Casillas Perez, Barbara E and Cremer, Sylvia},
journal = {Current Opinion in Insect Science},
number = {1},
pages = {1 -- 15},
publisher = {Elsevier},
title = {{Organisational immunity in social insects}},
doi = {10.1016/j.cois.2014.09.001},
volume = {5},
year = {2014},
}
@inproceedings{2260,
abstract = {Direct Anonymous Attestation (DAA) is one of the most complex cryptographic protocols deployed in practice. It allows an embedded secure processor known as a Trusted Platform Module (TPM) to attest to the configuration of its host computer without violating the owner’s privacy. DAA has been standardized by the Trusted Computing Group and ISO/IEC.
The security of the DAA standard and all existing schemes is analyzed in the random-oracle model. We provide the first constructions of DAA in the standard model, that is, without relying on random oracles. Our constructions use new building blocks, including the first efficient signatures of knowledge in the standard model, which have many applications beyond DAA.
},
author = {Bernhard, David and Fuchsbauer, Georg and Ghadafi, Essam},
location = {Banff, AB, Canada},
pages = {518 -- 533},
publisher = {Springer},
title = {{Efficient signatures of knowledge and DAA in the standard model}},
doi = {10.1007/978-3-642-38980-1_33},
volume = {7954},
year = {2013},
}
@article{2264,
abstract = {Faithful progression through the cell cycle is crucial to the maintenance and developmental potential of stem cells. Here, we demonstrate that neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs) employ a zinc-finger transcription factor specificity protein 2 (Sp2) as a cell cycle regulator in two temporally and spatially distinct progenitor domains. Differential conditional deletion of Sp2 in early embryonic cerebral cortical progenitors, and perinatal olfactory bulb progenitors disrupted transitions through G1, G2 and M phases, whereas DNA synthesis appeared intact. Cell-autonomous function of Sp2 was identified by deletion of Sp2 using mosaic analysis with double markers, which clearly established that conditional Sp2-null NSCs and NPCs are M phase arrested in vivo. Importantly, conditional deletion of Sp2 led to a decline in the generation of NPCs and neurons in the developing and postnatal brains. Our findings implicate Sp2-dependent mechanisms as novel regulators of cell cycle progression, the absence of which disrupts neurogenesis in the embryonic and postnatal brain.},
author = {Liang, Huixuan and Xiao, Guanxi and Yin, Haifeng and Hippenmeyer, Simon and Horowitz, Jonathan and Ghashghaei, Troy},
journal = {Development},
number = {3},
pages = {552 -- 561},
publisher = {Company of Biologists},
title = {{Neural development is dependent on the function of specificity protein 2 in cell cycle progression}},
doi = {10.1242/dev.085621},
volume = {140},
year = {2013},
}
@inproceedings{2270,
abstract = {Representation languages for coalitional games are a key research area in algorithmic game theory. There is an inher-
ent tradeoff between how general a language is, allowing it to capture more elaborate games, and how hard it is computationally to optimize and solve such games. One prominent such language is the simple yet expressive
Weighted Graph Games (WGGs) representation (Deng and Papadimitriou 1994), which maintains knowledge about synergies between agents in the form of an edge weighted graph. We consider the problem of finding the optimal coalition structure in WGGs. The agents in such games are vertices in a graph, and the value of a coalition is the sum of the weights of the edges present between coalition members. The optimal coalition structure is a partition of the agents to coalitions, that maximizes the sum of utilities obtained by the coalitions. We show that finding the optimal coalition structure is not only hard for general graphs, but is also intractable for restricted families such as planar graphs which are amenable for many other combinatorial problems. We then provide algorithms with constant factor approximations for planar, minorfree and bounded degree graphs.},
author = {Bachrach, Yoram and Kohli, Pushmeet and Kolmogorov, Vladimir and Zadimoghaddam, Morteza},
location = {Bellevue, WA, United States},
pages = {81--87},
publisher = {AAAI Press},
title = {{Optimal Coalition Structures in Cooperative Graph Games}},
year = {2013},
}
@inproceedings{2272,
abstract = {We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) x1...xn is the sum of terms over intervals [i,j] where each term is non-zero only if the substring xi...xj equals a prespecified pattern α. Such CRFs can be naturally applied to many sequence tagging problems.
We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively O(nL), O(nLℓmax) and O(nLmin{|D|,log(ℓmax+1)}) where L is the combined length of input patterns, ℓmax is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively O(nL|D|), O(n|Γ|L2ℓ2max) and O(nL|D|), where |Γ| is the number of input patterns.
In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an O(nL) algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case. },
author = {Takhanov, Rustem and Kolmogorov, Vladimir},
booktitle = {ICML'13 Proceedings of the 30th International Conference on International},
location = {Atlanta, GA, USA},
number = {3},
pages = {145 -- 153},
publisher = {International Machine Learning Society},
title = {{Inference algorithms for pattern-based CRFs on sequence data}},
volume = {28},
year = {2013},
}
@techreport{2273,
abstract = {We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.},
author = {Vladimir Kolmogorov},
publisher = {IST Austria},
title = {{Reweighted message passing revisited}},
year = {2013},
}
@techreport{2274,
abstract = {Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto'92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs -- so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model, using graphs with high "pebbling complexity" and Merkle hash-trees. },
author = {Dziembowski, Stefan and Faust, Sebastian and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z},
publisher = {IST Austria},
title = {{Proofs of Space}},
year = {2013},
}
@inproceedings{2276,
abstract = {The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions.},
author = {Gridchyn, Igor and Kolmogorov, Vladimir},
location = {Sydney, Australia},
pages = {2320 -- 2327},
publisher = {IEEE},
title = {{Potts model, parametric maxflow and k-submodular functions}},
doi = {10.1109/ICCV.2013.288},
year = {2013},
}
@article{2277,
abstract = {Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.},
author = {Simmons, Kristina and Prentice, Jason and Tkacik, Gasper and Homann, Jan and Yee, Heather and Palmer, Stephanie and Nelson, Philip and Balasubramanian, Vijay},
journal = {PLoS Computational Biology},
number = {12},
publisher = {Public Library of Science},
title = {{Transformation of stimulus correlations by the retina}},
doi = {10.1371/journal.pcbi.1003344},
volume = {9},
year = {2013},
}
@article{2278,
abstract = {It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.},
author = {Pérez Gómez, Raquel and Slovakova, Jana and Rives Quinto, Noemí and Krejčí, Alena and Carmena, Ana},
journal = {Journal of Cell Science},
number = {21},
pages = {4873 -- 4884},
publisher = {Company of Biologists},
title = {{A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development}},
doi = {10.1242/jcs.125617},
volume = {126},
year = {2013},
}
@inproceedings{2279,
abstract = {We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Randour, Mickael and Raskin, Jean},
location = {Hanoi, Vietnam},
pages = {118 -- 132},
publisher = {Springer},
title = {{Looking at mean-payoff and total-payoff through windows}},
doi = {10.1007/978-3-319-02444-8_10},
volume = {8172},
year = {2013},
}
@article{2280,
abstract = {The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application-chromosome organization in the human cell nucleus-is discussed briefly, and some illustrative results are presented.},
author = {Uhler, Caroline and Wright, Stephen},
journal = {SIAM Review},
number = {4},
pages = {671 -- 706},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Packing ellipsoids with overlap}},
doi = {10.1137/120872309},
volume = {55},
year = {2013},
}
@article{2282,
abstract = {Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly.},
author = {Campinho, Pedro and Behrndt, Martin and Ranft, Jonas and Risler, Thomas and Minc, Nicolas and Heisenberg, Carl-Philipp J},
journal = {Nature Cell Biology},
pages = {1405 -- 1414},
publisher = {Nature Publishing Group},
title = {{Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly}},
doi = {10.1038/ncb2869},
volume = {15},
year = {2013},
}
@article{2283,
abstract = {Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.},
author = {Pull, Christopher and Hughes, William and Brown, Markus},
journal = {Naturwissenschaften},
number = {12},
pages = {1125 -- 1136},
publisher = {Springer},
title = {{Tolerating an infection: an indirect benefit of co-founding queen associations in the ant Lasius niger }},
doi = {10.1007/s00114-013-1115-5},
volume = {100},
year = {2013},
}
@article{2284,
abstract = {Background: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. Results: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. Conclusion: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.},
author = {Tragust, Simon and Ugelvig, Line V and Chapuisat, Michel and Heinze, Jürgen and Cremer, Sylvia},
journal = {BMC Evolutionary Biology},
number = {1},
publisher = {BioMed Central},
title = {{Pupal cocoons affect sanitary brood care and limit fungal infections in ant colonies}},
doi = {10.1186/1471-2148-13-225},
volume = {13},
year = {2013},
}
@article{2286,
abstract = {The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation.},
author = {Campinho, Pedro and Heisenberg, Carl-Philipp J},
journal = {EMBO Journal},
number = {21},
pages = {2783 -- 2784},
publisher = {Wiley-Blackwell},
title = {{The force and effect of cell proliferation}},
doi = {10.1038/emboj.2013.225},
volume = {32},
year = {2013},
}
@article{2287,
abstract = {Negative frequency-dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long-lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex-ratio variation in two chromosome races of Rumex hastatulus, an annual, wind-pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female-biased sex ratios. Female-biased sex ratios characterized most populations of R. hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high-density populations had the highest proportion of females, whereas smaller, low-density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female-biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.},
author = {Pickup, Melinda and Barrett, Spencer},
journal = {Ecology and Evolution},
number = {3},
pages = {629 -- 639},
publisher = {Wiley-Blackwell},
title = {{The influence of demography and local mating environment on sex ratios in a wind-pollinated dioecious plant}},
doi = {10.1002/ece3.465},
volume = {3},
year = {2013},
}