@article{9250, abstract = {Aprotic alkali metal–O2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (1O2). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect 1O2 formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress 1O2 formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above ~3.5 V versus Li/Li+ drive 1O2 evolution from superoxide oxidation, while disproportionation always generates some 1O2. We find that 1O2 suppression requires oxidation to be faster than the generation of 1O2 from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.}, author = {Petit, Yann K. and Mourad, Eléonore and Prehal, Christian and Leypold, Christian and Windischbacher, Andreas and Mijailovic, Daniel and Slugovc, Christian and Borisov, Sergey M. and Zojer, Egbert and Brutti, Sergio and Fontaine, Olivier and Freunberger, Stefan Alexander}, issn = {1755-4349}, journal = {Nature Chemistry}, keywords = {General Chemistry, General Chemical Engineering}, number = {5}, pages = {465--471}, publisher = {Springer Nature}, title = {{Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation}}, doi = {10.1038/s41557-021-00643-z}, volume = {13}, year = {2021}, } @phdthesis{9623, abstract = {Cytoplasmic reorganizations are essential for morphogenesis. In large cells like oocytes, these reorganizations become crucial in patterning the oocyte for later stages of embryonic development. Ascidians oocytes reorganize their cytoplasm (ooplasm) in a spectacular manner. Ooplasmic reorganization is initiated at fertilization with the contraction of the actomyosin cortex along the animal-vegetal axis of the oocyte, driving the accumulation of cortical endoplasmic reticulum (cER), maternal mRNAs associated to it and a mitochondria-rich subcortical layer – the myoplasm – in a region of the vegetal pole termed contraction pole (CP). Here we have used the species Phallusia mammillata to investigate the changes in cell shape that accompany these reorganizations and the mechanochemical mechanisms underlining CP formation. We report that the length of the animal-vegetal (AV) axis oscillates upon fertilization: it first undergoes a cycle of fast elongation-lengthening followed by a slow expansion of mainly the vegetal pole (VP) of the cell. We show that the fast oscillation corresponds to a dynamic polarization of the actin cortex as a result of a fertilization-induced increase in cortical tension in the oocyte that triggers a rupture of the cortex at the animal pole and the establishment of vegetal-directed cortical flows. These flows are responsible for the vegetal accumulation of actin causing the VP to flatten. We find that the slow expansion of the VP, leading to CP formation, correlates with a relaxation of the vegetal cortex and that the myoplasm plays a role in the expansion. We show that the myoplasm is a solid-like layer that buckles under compression forces arising from the contracting actin cortex at the VP. Straightening of the myoplasm when actin flows stops, facilitates the expansion of the VP and the CP. Altogether, our results present a previously unrecognized role for the myoplasm in ascidian ooplasmic segregation. }, author = {Caballero Mancebo, Silvia}, isbn = {978-3-99078-012-1}, issn = {2663-337X}, pages = {111}, publisher = {Institute of Science and Technology Austria}, title = {{Fertilization-induced deformations are controlled by the actin cortex and a mitochondria-rich subcortical layer in ascidian oocytes}}, doi = {10.15479/at:ista:9623}, year = {2021}, } @article{9006, abstract = {Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.}, author = {Shamipour, Shayan and Caballero Mancebo, Silvia and Heisenberg, Carl-Philipp J}, issn = {18781551}, journal = {Developmental Cell}, number = {2}, pages = {P213--226}, publisher = {Elsevier}, title = {{Cytoplasm's got moves}}, doi = {10.1016/j.devcel.2020.12.002}, volume = {56}, year = {2021}, } @article{9429, abstract = {De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.}, author = {Morandell, Jasmin and Schwarz, Lena A and Basilico, Bernadette and Tasciyan, Saren and Dimchev, Georgi A and Nicolas, Armel and Sommer, Christoph M and Kreuzinger, Caroline and Dotter, Christoph and Knaus, Lisa and Dobler, Zoe and Cacci, Emanuele and Schur, Florian KM and Danzl, Johann G and Novarino, Gaia}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology}, number = {1}, publisher = {Springer Nature}, title = {{Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development}}, doi = {10.1038/s41467-021-23123-x}, volume = {12}, year = {2021}, } @phdthesis{10058, abstract = {Quantum information and computation has become a vast field paved with opportunities for researchers and investors. As large multinational companies and international funds are heavily investing in quantum technologies it is still a question which platform is best suited for the task of realizing a scalable quantum processor. In this work we investigate hole spins in Ge quantum wells. These hold great promise as they possess several favorable properties: a small effective mass, a strong spin-orbit coupling, long relaxation time and an inherent immunity to hyperfine noise. All these characteristics helped Ge hole spin qubits to evolve from a single qubit to a fully entangled four qubit processor in only 3 years. Here, we investigated a qubit approach leveraging the large out-of-plane g-factors of heavy hole states in Ge quantum dots. We found this qubit to be reproducibly operable at extremely low magnetic field and at large speeds while maintaining coherence. This was possible because large differences of g-factors in adjacent dots can be achieved in the out-of-plane direction. In the in-plane direction the small g-factors, on the other hand, can be altered very effectively by the confinement potentials. Here, we found that this can even lead to a sign change of the g-factors. The resulting g-factor difference alters the dynamics of the system drastically and produces effects typically attributed to a spin-orbit induced spin-flip term. The investigations carried out in this thesis give further insights into the possibilities of holes in Ge and reveal new physical properties that need to be considered when designing future spin qubit experiments.}, author = {Jirovec, Daniel}, issn = {2663-337X}, keywords = {qubits, quantum computing, holes}, pages = {151}, publisher = {Institute of Science and Technology Austria}, title = {{Singlet-Triplet qubits and spin-orbit interaction in 2-dimensional Ge hole gases}}, doi = {10.15479/at:ista:10058}, year = {2021}, } @article{8909, abstract = {Spin qubits are considered to be among the most promising candidates for building a quantum processor. Group IV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled X and Z-rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1μs which we extend beyond 15μs with echo techniques. These results show that Ge hole singlet triplet qubits outperform their electronic Si and GaAs based counterparts in speed and coherence, respectively. In addition, they are on par with Ge single spin qubits, but can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies.}, author = {Jirovec, Daniel and Hofmann, Andrea C and Ballabio, Andrea and Mutter, Philipp M. and Tavani, Giulio and Botifoll, Marc and Crippa, Alessandro and Kukucka, Josip and Sagi, Oliver and Martins, Frederico and Saez Mollejo, Jaime and Prieto Gonzalez, Ivan and Borovkov, Maksim and Arbiol, Jordi and Chrastina, Daniel and Isella, Giovanni and Katsaros, Georgios}, issn = {1476-4660}, journal = {Nature Materials}, number = {8}, pages = {1106–1112}, publisher = {Springer Nature}, title = {{A singlet triplet hole spin qubit in planar Ge}}, doi = {10.1038/s41563-021-01022-2}, volume = {20}, year = {2021}, } @phdthesis{9397, abstract = {Accumulation of interstitial fluid (IF) between embryonic cells is a common phenomenon in vertebrate embryogenesis. Unlike other model systems, where these accumulations coalesce into a large central cavity – the blastocoel, in zebrafish, IF is more uniformly distributed between the deep cells (DC) before the onset of gastrulation. This is likely due to the presence of a large extraembryonic structure – the yolk cell (YC) at the position where the blastocoel typically forms in other model organisms. IF has long been speculated to play a role in tissue morphogenesis during embryogenesis, but direct evidence supporting such function is still sparse. Here we show that the relocalization of IF to the interface between the YC and DC/epiblast is critical for axial mesendoderm (ME) cell protrusion formation and migration along this interface, a key process in embryonic axis formation. We further demonstrate that axial ME cell migration and IF relocalization engage in a positive feedback loop, where axial ME migration triggers IF accumulation ahead of the advancing axial ME tissue by mechanically compressing the overlying epiblast cell layer. Upon compression, locally induced flow relocalizes the IF through the porous epiblast tissue resulting in an IF accumulation ahead of the leading axial ME. This IF accumulation, in turn, promotes cell protrusion formation and migration of the leading axial ME cells, thereby facilitating axial ME extension. Our findings reveal a central role of dynamic IF relocalization in orchestrating germ layer morphogenesis during gastrulation.}, author = {Huljev, Karla}, issn = {2663-337X}, pages = {101}, publisher = {Institute of Science and Technology Austria}, title = {{Coordinated spatiotemporal reorganization of interstitial fluid is required for axial mesendoderm migration in zebrafish gastrulation}}, doi = {10.15479/at:ista:9397}, year = {2021}, } @unpublished{10066, abstract = {The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions. We give a key step towards tackling this variability with an algorithm that, without modification, is capable of tuning a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate SiGe heterostructure double quantum dot device from scratch. We achieve tuning times of 30, 10, and 92 minutes, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning.}, author = {Severin, B. and Lennon, D. T. and Camenzind, L. C. and Vigneau, F. and Fedele, F. and Jirovec, Daniel and Ballabio, A. and Chrastina, D. and Isella, G. and Kruijf, M. de and Carballido, M. J. and Svab, S. and Kuhlmann, A. V. and Braakman, F. R. and Geyer, S. and Froning, F. N. M. and Moon, H. and Osborne, M. A. and Sejdinovic, D. and Katsaros, Georgios and Zumbühl, D. M. and Briggs, G. A. D. and Ares, N.}, booktitle = {arXiv}, title = {{Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning}}, doi = {10.48550/arXiv.2107.12975}, year = {2021}, } @article{9437, abstract = {The synaptic connection from medial habenula (MHb) to interpeduncular nucleus (IPN) is critical for emotion-related behaviors and uniquely expresses R-type Ca2+ channels (Cav2.3) and auxiliary GABAB receptor (GBR) subunits, the K+-channel tetramerization domain-containing proteins (KCTDs). Activation of GBRs facilitates or inhibits transmitter release from MHb terminals depending on the IPN subnucleus, but the role of KCTDs is unknown. We therefore examined the localization and function of Cav2.3, GBRs, and KCTDs in this pathway in mice. We show in heterologous cells that KCTD8 and KCTD12b directly bind to Cav2.3 and that KCTD8 potentiates Cav2.3 currents in the absence of GBRs. In the rostral IPN, KCTD8, KCTD12b, and Cav2.3 co-localize at the presynaptic active zone. Genetic deletion indicated a bidirectional modulation of Cav2.3-mediated release by these KCTDs with a compensatory increase of KCTD8 in the active zone in KCTD12b-deficient mice. The interaction of Cav2.3 with KCTDs therefore scales synaptic strength independent of GBR activation.}, author = {Bhandari, Pradeep and Vandael, David H and Fernández-Fernández, Diego and Fritzius, Thorsten and Kleindienst, David and Önal, Hüseyin C and Montanaro-Punzengruber, Jacqueline-Claire and Gassmann, Martin and Jonas, Peter M and Kulik, Akos and Bettler, Bernhard and Shigemoto, Ryuichi and Koppensteiner, Peter}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{GABAB receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals}}, doi = {10.7554/ELIFE.68274}, volume = {10}, year = {2021}, } @phdthesis{9562, abstract = {Left-right asymmetries can be considered a fundamental organizational principle of the vertebrate central nervous system. The hippocampal CA3-CA1 pyramidal cell synaptic connection shows an input-side dependent asymmetry where the hemispheric location of the presynaptic CA3 neuron determines the synaptic properties. Left-input synapses terminating on apical dendrites in stratum radiatum have a higher density of NMDA receptor subunit GluN2B, a lower density of AMPA receptor subunit GluA1 and smaller areas with less often perforated PSDs. On the other hand, left-input synapses terminating on basal dendrites in stratum oriens have lower GluN2B densities than right-input ones. Apical and basal synapses further employ different signaling pathways involved in LTP. SDS-digested freeze-fracture replica labeling can visualize synaptic membrane proteins with high sensitivity and resolution, and has been used to reveal the asymmetry at the electron microscopic level. However, it requires time-consuming manual demarcation of the synaptic surface for quantitative measurements. To facilitate the analysis of replica labeling, I first developed a software named Darea, which utilizes deep-learning to automatize this demarcation. With Darea I characterized the synaptic distribution of NMDA and AMPA receptors as well as the voltage-gated Ca2+ channels in CA1 stratum radiatum and oriens. Second, I explored the role of GluN2B and its carboxy-terminus in the establishment of input-side dependent hippocampal asymmetry. In conditional knock-out mice lacking GluN2B expression in CA1 and GluN2B-2A swap mice, where GluN2B carboxy-terminus was exchanged to that of GluN2A, no significant asymmetries of GluN2B, GluA1 and PSD area were detected. We further discovered a previously unknown functional asymmetry of GluN2A, which was also lost in the swap mouse. These results demonstrate that GluN2B carboxy-terminus plays a critical role in normal formation of input-side dependent asymmetry.}, author = {Kleindienst, David}, issn = {2663-337X}, pages = {124}, publisher = {Institute of Science and Technology Austria}, title = {{2B or not 2B: Hippocampal asymmetries mediated by NMDA receptor subunit GluN2B C-terminus and high-throughput image analysis by Deep-Learning}}, doi = {10.15479/at:ista:9562}, year = {2021}, } @inbook{9756, abstract = {High-resolution visualization and quantification of membrane proteins contribute to the understanding of their functions and the roles they play in physiological and pathological conditions. Sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) is a powerful electron microscopy method to study quantitatively the two-dimensional distribution of transmembrane proteins and their tightly associated proteins. During treatment with SDS, intracellular organelles and proteins not anchored to the replica are dissolved, whereas integral membrane proteins captured and stabilized by carbon/platinum deposition remain on the replica. Their intra- and extracellular domains become exposed on the surface of the replica, facilitating the accessibility of antibodies and, therefore, providing higher labeling efficiency than those obtained with other immunoelectron microscopy techniques. In this chapter, we describe the protocols of SDS-FRL adapted for mammalian brain samples, and optimization of the SDS treatment to increase the labeling efficiency for quantification of Cav2.1, the alpha subunit of P/Q-type voltage-dependent calcium channels utilizing deep learning algorithms.}, author = {Kaufmann, Walter and Kleindienst, David and Harada, Harumi and Shigemoto, Ryuichi}, booktitle = { Receptor and Ion Channel Detection in the Brain}, isbn = {9781071615218}, keywords = {Freeze-fracture replica: Deep learning, Immunogold labeling, Integral membrane protein, Electron microscopy}, pages = {267--283}, publisher = {Humana}, title = {{High-Resolution localization and quantitation of membrane proteins by SDS-digested freeze-fracture replica labeling (SDS-FRL)}}, doi = {10.1007/978-1-0716-1522-5_19}, volume = {169}, year = {2021}, } @phdthesis{8934, abstract = {In this thesis, we consider several of the most classical and fundamental problems in static analysis and formal verification, including invariant generation, reachability analysis, termination analysis of probabilistic programs, data-flow analysis, quantitative analysis of Markov chains and Markov decision processes, and the problem of data packing in cache management. We use techniques from parameterized complexity theory, polyhedral geometry, and real algebraic geometry to significantly improve the state-of-the-art, in terms of both scalability and completeness guarantees, for the mentioned problems. In some cases, our results are the first theoretical improvements for the respective problems in two or three decades.}, author = {Goharshady, Amir Kafshdar}, issn = {2663-337X}, pages = {278}, publisher = {Institute of Science and Technology Austria}, title = {{Parameterized and algebro-geometric advances in static program analysis}}, doi = {10.15479/AT:ISTA:8934}, year = {2021}, } @phdthesis{10307, abstract = {Bacteria-host interactions represent a continuous trade-off between benefit and risk. Thus, the host immune response is faced with a non-trivial problem – accommodate beneficial commensals and remove harmful pathogens. This is especially difficult as molecular patterns, such as lipopolysaccharide or specific surface organelles such as pili, are conserved in both, commensal and pathogenic bacteria. Type 1 pili, tightly regulated by phase variation, are considered an important virulence factor of pathogenic bacteria as they facilitate invasion into host cells. While invasion represents a de facto passive mechanism for pathogens to escape the host immune response, we demonstrate a fundamental role of type 1 pili as active modulators of the innate and adaptive immune response.}, author = {Tomasek, Kathrin}, issn = {2663-337X}, pages = {73}, publisher = {Institute of Science and Technology Austria}, title = {{Pathogenic Escherichia coli hijack the host immune response}}, doi = {10.15479/at:ista:10307}, year = {2021}, } @unpublished{10316, abstract = {A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on dendritic cells as a previously undescribed binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of pathogenic bacteria to CD14 lead to reduced dendritic cell migration and blunted expression of co-stimulatory molecules, both rate-limiting factors of T cell activation. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease.}, author = {Tomasek, Kathrin and Leithner, Alexander F and Glatzová, Ivana and Lukesch, Michael S. and Guet, Calin C and Sixt, Michael K}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14}}, doi = {10.1101/2021.10.18.464770}, year = {2021}, } @article{9010, abstract = {Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.}, author = {Ötvös, Krisztina and Marconi, Marco and Vega, Andrea and O’Brien, Jose and Johnson, Alexander J and Abualia, Rashed and Antonielli, Livio and Montesinos López, Juan C and Zhang, Yuzhou and Tan, Shutang and Cuesta, Candela and Artner, Christina and Bouguyon, Eleonore and Gojon, Alain and Friml, Jiří and Gutiérrez, Rodrigo A. and Wabnik, Krzysztof T and Benková, Eva}, issn = {14602075}, journal = {EMBO Journal}, number = {3}, publisher = {Embo Press}, title = {{Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport}}, doi = {10.15252/embj.2020106862}, volume = {40}, year = {2021}, } @article{9913, abstract = {Nitrate commands genome-wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild-type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post-translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.}, author = {Vega, Andrea and Fredes, Isabel and O’Brien, José and Shen, Zhouxin and Ötvös, Krisztina and Abualia, Rashed and Benková, Eva and Briggs, Steven P. and Gutiérrez, Rodrigo A.}, issn = {1469-3178}, journal = {EMBO Reports}, number = {9}, publisher = {Wiley}, title = {{Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture}}, doi = {10.15252/embr.202051813}, volume = {22}, year = {2021}, } @phdthesis{10303, abstract = {Nitrogen is an essential macronutrient determining plant growth, development and affecting agricultural productivity. Root, as a hub that perceives and integrates local and systemic signals on the plant’s external and endogenous nitrogen resources, communicates with other plant organs to consolidate their physiology and development in accordance with actual nitrogen balance. Over the last years, numerous studies demonstrated that these comprehensive developmental adaptations rely on the interaction between pathways controlling nitrogen homeostasis and hormonal networks acting globally in the plant body. However, molecular insights into how the information about the nitrogen status is translated through hormonal pathways into specific developmental output are lacking. In my work, I addressed so far poorly understood mechanisms underlying root-to-shoot communication that lead to a rapid re-adjustment of shoot growth and development after nitrate provision. Applying a combination of molecular, cell, and developmental biology approaches, genetics and grafting experiments as well as hormonal analytics, I identified and characterized an unknown molecular framework orchestrating shoot development with a root nitrate sensory system. }, author = {Abualia, Rashed}, issn = {2663-337X}, pages = {139}, publisher = {Institute of Science and Technology Austria}, title = {{Role of hormones in nitrate regulated growth}}, doi = {10.15479/at:ista:10303}, year = {2021}, } @phdthesis{9962, abstract = {The brain is one of the largest and most complex organs and it is composed of billions of neurons that communicate together enabling e.g. consciousness. The cerebral cortex is the largest site of neural integration in the central nervous system. Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final position, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating radial neuronal migration in vivo are however still unclear. Recent evidence suggests that distinct signaling cues act cell-autonomously but differentially at certain steps during the overall migration process. Moreover, functional analysis of genetic mosaics (mutant neurons present in wild-type/heterozygote environment) using the MADM (Mosaic Analysis with Double Markers) analyses in comparison to global knockout also indicate a significant degree of non-cell-autonomous and/or community effects in the control of cortical neuron migration. The interactions of cell-intrinsic (cell-autonomous) and cell-extrinsic (non-cell-autonomous) components are largely unknown. In part of this thesis work we established a MADM-based experimental strategy for the quantitative analysis of cell-autonomous gene function versus non-cell-autonomous and/or community effects. The direct comparison of mutant neurons from the genetic mosaic (cell-autonomous) to mutant neurons in the conditional and/or global knockout (cell-autonomous + non-cell-autonomous) allows to quantitatively analyze non-cell-autonomous effects. Such analysis enable the high-resolution analysis of projection neuron migration dynamics in distinct environments with concomitant isolation of genomic and proteomic profiles. Using these experimental paradigms and in combination with computational modeling we show and characterize the nature of non-cell-autonomous effects to coordinate radial neuron migration. Furthermore, this thesis discusses recent developments in neurodevelopment with focus on neuronal polarization and non-cell-autonomous mechanisms in neuronal migration.}, author = {Hansen, Andi H}, issn = {2663-337X}, keywords = {Neuronal migration, Non-cell-autonomous, Cell-autonomous, Neurodevelopmental disease}, pages = {182}, publisher = {Institute of Science and Technology Austria}, title = {{Cell-autonomous gene function and non-cell-autonomous effects in radial projection neuron migration}}, doi = {10.15479/at:ista:9962}, year = {2021}, } @article{9428, abstract = {Thermalization is the inevitable fate of many complex quantum systems, whose dynamics allow them to fully explore the vast configuration space regardless of the initial state---the behaviour known as quantum ergodicity. In a quest for experimental realizations of coherent long-time dynamics, efforts have focused on ergodicity-breaking mechanisms, such as integrability and localization. The recent discovery of persistent revivals in quantum simulators based on Rydberg atoms have pointed to the existence of a new type of behaviour where the system rapidly relaxes for most initial conditions, while certain initial states give rise to non-ergodic dynamics. This collective effect has been named ”quantum many-body scarring’by analogy with a related form of weak ergodicity breaking that occurs for a single particle inside a stadium billiard potential. In this Review, we provide a pedagogical introduction to quantum many-body scars and highlight the emerging connections with the semiclassical quantization of many-body systems. We discuss the relation between scars and more general routes towards weak violations of ergodicity due to embedded algebras and non-thermal eigenstates, and highlight possible applications of scars in quantum technology.}, author = {Serbyn, Maksym and Abanin, Dmitry A. and Papić, Zlatko}, issn = {1745-2481}, journal = {Nature Physics}, number = {6}, pages = {675–685}, publisher = {Nature Research}, title = {{Quantum many-body scars and weak breaking of ergodicity}}, doi = {10.1038/s41567-021-01230-2}, volume = {17}, year = {2021}, } @article{8931, abstract = {Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.}, author = {Gelová, Zuzana and Gallei, Michelle C and Pernisová, Markéta and Brunoud, Géraldine and Zhang, Xixi and Glanc, Matous and Li, Lanxin and Michalko, Jaroslav and Pavlovicova, Zlata and Verstraeten, Inge and Han, Huibin and Hajny, Jakub and Hauschild, Robert and Čovanová, Milada and Zwiewka, Marta and Hörmayer, Lukas and Fendrych, Matyas and Xu, Tongda and Vernoux, Teva and Friml, Jiří}, issn = {0168-9452}, journal = {Plant Science}, keywords = {Agronomy and Crop Science, Plant Science, Genetics, General Medicine}, publisher = {Elsevier}, title = {{Developmental roles of auxin binding protein 1 in Arabidopsis thaliana}}, doi = {10.1016/j.plantsci.2020.110750}, volume = {303}, year = {2021}, }