@article{743,
abstract = {This special issue of the Journal on Formal Methods in System Design is dedicated to Prof. Helmut Veith, who unexpectedly passed away in March 2016. Helmut Veith was a brilliant researcher, inspiring collaborator, passionate mentor, generous friend, and valued member of the formal methods community. Helmut was not only known for his numerous and influential contributions in the field of automated verification (most prominently his work on Counterexample-Guided Abstraction Refinement [1,2]), but also for his untiring and passionate efforts for the logic community: he co-organized the Vienna Summer of Logic (an event comprising twelve conferences and numerous workshops which attracted thousands of researchers from all over the world), he initiated the Vienna Center for Logic and Algorithms (which promotes international collaboration on logic and algorithms and organizes outreach events such as the LogicLounge), and he coordinated the Doctoral Program on Logical Methods in Computer Science at TU Wien (currently educating more than 40 doctoral students) and a National Research Network on Rigorous Systems Engineering (uniting fifteen researchers in Austria to address the challenge of building reliable and safe computer
systems). With his enthusiasm and commitment, Helmut completely reshaped the Austrian research landscape in the field of logic and verification in his few years as a full professor at TU Wien.},
author = {Gottlob, Georg and Henzinger, Thomas A and Weißenbacher, Georg},
journal = {Formal Methods in System Design},
number = {2},
pages = {267 -- 269},
publisher = {Springer},
title = {{Preface of the special issue in memoriam Helmut Veith}},
doi = {10.1007/s10703-017-0307-6},
volume = {51},
year = {2017},
}
@article{744,
abstract = {In evolutionary game theory interactions between individuals are often assumed obligatory. However, in many real-life situations, individuals can decide to opt out of an interaction depending on the information they have about the opponent. We consider a simple evolutionary game theoretic model to study such a scenario, where at each encounter between two individuals the type of the opponent (cooperator/defector) is known with some probability, and where each individual either accepts or opts out of the interaction. If the type of the opponent is unknown, a trustful individual accepts the interaction, whereas a suspicious individual opts out of the interaction. If either of the two individuals opt out both individuals remain without an interaction. We show that in the prisoners dilemma optional interactions along with suspicious behaviour facilitates the emergence of trustful cooperation.},
author = {Priklopil, Tadeas and Chatterjee, Krishnendu and Nowak, Martin},
issn = {00225193},
journal = { Journal of Theoretical Biology},
pages = {64 -- 72},
publisher = {Elsevier},
title = {{Optional interactions and suspicious behaviour facilitates trustful cooperation in prisoners dilemma}},
doi = {10.1016/j.jtbi.2017.08.025},
volume = {433},
year = {2017},
}
@article{745,
abstract = {Fluid flows in nature and applications are frequently subject to periodic velocity modulations. Surprisingly, even for the generic case of flow through a straight pipe, there is little consensus regarding the influence of pulsation on the transition threshold to turbulence: while most studies predict a monotonically increasing threshold with pulsation frequency (i.e. Womersley number, ), others observe a decreasing threshold for identical parameters and only observe an increasing threshold at low . In the present study we apply recent advances in the understanding of transition in steady shear flows to pulsating pipe flow. For moderate pulsation amplitudes we find that the first instability encountered is subcritical (i.e. requiring finite amplitude disturbances) and gives rise to localized patches of turbulence ('puffs') analogous to steady pipe flow. By monitoring the impact of pulsation on the lifetime of turbulence we map the onset of turbulence in parameter space. Transition in pulsatile flow can be separated into three regimes. At small Womersley numbers the dynamics is dominated by the decay turbulence suffers during the slower part of the cycle and hence transition is delayed significantly. As shown in this regime thresholds closely agree with estimates based on a quasi-steady flow assumption only taking puff decay rates into account. The transition point predicted in the zero limit equals to the critical point for steady pipe flow offset by the oscillation Reynolds number (i.e. the dimensionless oscillation amplitude). In the high frequency limit on the other hand, puff lifetimes are identical to those in steady pipe flow and hence the transition threshold appears to be unaffected by flow pulsation. In the intermediate frequency regime the transition threshold sharply drops (with increasing ) from the decay dominated (quasi-steady) threshold to the steady pipe flow level.},
author = {Xu, Duo and Warnecke, Sascha and Song, Baofang and Ma, Xingyu and Hof, Björn},
issn = {00221120},
journal = {Journal of Fluid Mechanics},
pages = {418 -- 432},
publisher = {Cambridge University Press},
title = {{Transition to turbulence in pulsating pipe flow}},
doi = {10.1017/jfm.2017.620},
volume = {831},
year = {2017},
}
@article{746,
abstract = {Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-Aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-Activated long-Term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics.},
author = {Aloisi, Elisabetta and Le Corf, Katy and Dupuis, Julien and Zhang, Pei and Ginger, Melanie and Labrousse, Virginie and Spatuzza, Michela and Georg Haberl, Matthias and Costa, Lara and Shigemoto, Ryuichi and Tappe Theodor, Anke and Drago, Fillippo and Vincenzo Piazza, Pier and Mulle, Christophe and Groc, Laurent and Ciranna, Lucia and Catania, Maria and Frick, Andreas},
issn = {20411723},
journal = {Nature Communications},
number = {1},
publisher = {Nature Publishing Group},
title = {{Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice}},
doi = {10.1038/s41467-017-01191-2},
volume = {8},
year = {2017},
}
@article{747,
abstract = {Bradykinin (BK), a component of the kallikrein-kininogen-kinin system exerts multiple effects via B1 and B2 receptor activation. In the cardiovascular system, bradykinin has cardioprotective and vasodilator properties. We investigated the effect of BK on cardiac-projecting neurons of nucleus ambiguus, a key site for the parasympathetic cardiac regulation. BK produced a dose-dependent increase in cytosolic Ca2+ concentration. Pretreatment with HOE140, a B2 receptor antagonist, but not with R715, a B1 receptor antagonist, abolished the response to BK. A selective B2 receptor agonist, but not a B1 receptor agonist, elicited an increase in cytosolic Ca2+ similarly to BK. Inhibition of N-type voltage-gated Ca2+ channels with ω-conotoxin GVIA had no effect on the Ca2+ signal produced by BK, while pretreatment with ω-conotoxin MVIIC, a blocker of P/Q-type of Ca2+ channels, significantly diminished the effect of BK. Pretreatment with xestospongin C and 2-aminoethoxydiphenyl borate, antagonists of inositol 1,4,5-trisphosphate receptors, abolished the response to BK. Inhibition of ryanodine receptors reduced the BK-induced Ca2+ increase, while disruption of lysosomal Ca2+ stores with bafilomycin A1 did not affect the response. BK produced a dose-dependent depolarization of nucleus ambiguus neurons, which was prevented by the B2 receptor antagonist. In vivo studies indicate that microinjection of BK into nucleus ambiguus elicited bradycardia in conscious rats via B2 receptors. In summary, in cardiac vagal neurons of nucleus ambiguus, BK activates B2 receptors promoting Ca2+ influx and Ca2+ release from endoplasmic reticulum, and membrane depolarization; these effects are translated in vivo by bradycardia.},
author = {Brǎiloiu, Eugen and Mcguire, Matthew and Shuler, Shadaria and Deliu, Elena and Barr, Jeffrey and Abood, Mary and Brailoiu, Gabriela},
issn = {03064522},
journal = {Neuroscience},
pages = {23 -- 32},
publisher = {Elsevier},
title = {{Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus}},
doi = {10.1016/j.neuroscience.2017.09.034},
volume = {365},
year = {2017},
}
@article{749,
abstract = {Synaptotagmin 7 (Syt7) is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC)-Purkinje cell (PC) synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission},
author = {Chen, Chong and Satterfield, Rachel and Young, Samuel and Jonas, Peter M},
issn = {22111247},
journal = {Cell Reports},
number = {8},
pages = {2082 -- 2089},
publisher = {Cell Press},
title = {{Triple function of Synaptotagmin 7 ensures efficiency of high-frequency transmission at central GABAergic synapses}},
doi = {10.1016/j.celrep.2017.10.122},
volume = {21},
year = {2017},
}
@inproceedings{750,
abstract = {Modern communication technologies allow first responders to contact thousands of potential volunteers simultaneously for support during a crisis or disaster event. However, such volunteer efforts must be well coordinated and monitored, in order to offer an effective relief to the professionals. In this paper we extend earlier work on optimally assigning volunteers to selected landmark locations. In particular, we emphasize the aspect that obtaining good assignments requires not only advanced computational tools, but also a realistic measure of distance between volunteers and landmarks. Specifically, we propose the use of the Open Street Map (OSM) driving distance instead of he previously used flight distance. We find the OSM driving distance to be better aligned with the interests of volunteers and first responders. Furthermore, we show that relying on the flying distance leads to a substantial underestimation of the number of required volunteers, causing negative side effects in case of an actual crisis situation.},
author = {Pielorz, Jasmin and Prandtstetter, Matthias and Straub, Markus and Lampert, Christoph},
booktitle = {2017 IEEE International Conference on Big Data},
isbn = {978-153862714-3},
location = {Boston, MA, United States},
pages = {3760 -- 3763},
publisher = {IEEE},
title = {{Optimal geospatial volunteer allocation needs realistic distances}},
doi = {10.1109/BigData.2017.8258375},
year = {2017},
}
@article{751,
abstract = {The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components.},
author = {Matsubayashi, Yutaka and Louani, Adam and Dragu, Anca and Sanchez Sanchez, Besaiz and Serna Morales, Eduardo and Yolland, Lawrence and György, Attila and Vizcay, Gema and Fleck, Roland and Heddleston, John and Chew, Teng and Siekhaus, Daria E and Stramer, Brian},
issn = {09609822},
journal = {Current Biology},
number = {22},
pages = {3526 -- 3534e.4},
publisher = {Cell Press},
title = {{A moving source of matrix components is essential for De Novo basement membrane formation}},
doi = {10.1016/j.cub.2017.10.001},
volume = {27},
year = {2017},
}
@inproceedings{791,
abstract = {Consider the following random process: we are given n queues, into which elements of increasing labels are inserted uniformly at random. To remove an element, we pick two queues at random, and remove the element of lower label (higher priority) among the two. The cost of a removal is the rank of the label removed, among labels still present in any of the queues, that is, the distance from the optimal choice at each step. Variants of this strategy are prevalent in state-of-the-art concurrent priority queue implementations. Nonetheless, it is not known whether such implementations provide any rank guarantees, even in a sequential model. We answer this question, showing that this strategy provides surprisingly strong guarantees: Although the single-choice process, where we always insert and remove from a single randomly chosen queue, has degrading cost, going to infinity as we increase the number of steps, in the two choice process, the expected rank of a removed element is O(n) while the expected worst-case cost is O(n log n). These bounds are tight, and hold irrespective of the number of steps for which we run the process. The argument is based on a new technical connection between "heavily loaded" balls-into-bins processes and priority scheduling. Our analytic results inspire a new concurrent priority queue implementation, which improves upon the state of the art in terms of practical performance.},
author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Li, Jerry and Nadiradze, Giorgi},
booktitle = {Proceedings of the ACM Symposium on Principles of Distributed Computing},
isbn = {978-145034992-5},
location = {Washington, WA, USA},
pages = {283 -- 292},
publisher = {ACM},
title = {{The power of choice in priority scheduling}},
doi = {10.1145/3087801.3087810},
volume = {Part F129314},
year = {2017},
}
@article{792,
abstract = {The chaotic dynamics of low-dimensional systems, such as Lorenz or Rössler flows, is guided by the infinity of periodic orbits embedded in their strange attractors. Whether this is also the case for the infinite-dimensional dynamics of Navier–Stokes equations has long been speculated, and is a topic of ongoing study. Periodic and relative periodic solutions have been shown to be involved in transitions to turbulence. Their relevance to turbulent dynamics – specifically, whether periodic orbits play the same role in high-dimensional nonlinear systems like the Navier–Stokes equations as they do in lower-dimensional systems – is the focus of the present investigation. We perform here a detailed study of pipe flow relative periodic orbits with energies and mean dissipations close to turbulent values. We outline several approaches to reduction of the translational symmetry of the system. We study pipe flow in a minimal computational cell at Re=2500, and report a library of invariant solutions found with the aid of the method of slices. Detailed study of the unstable manifolds of a sample of these solutions is consistent with the picture that relative periodic orbits are embedded in the chaotic saddle and that they guide the turbulent dynamics.},
author = {Budanur, Nazmi B and Short, Kimberly and Farazmand, Mohammad and Willis, Ashley and Cvitanović, Predrag},
issn = {00221120},
journal = {Journal of Fluid Mechanics},
pages = {274 -- 301},
publisher = {Cambridge University Press},
title = {{Relative periodic orbits form the backbone of turbulent pipe flow}},
doi = {10.1017/jfm.2017.699},
volume = {833},
year = {2017},
}
@article{793,
abstract = {Let P be a finite point set in the plane. A cordinary triangle in P is a subset of P consisting of three non-collinear points such that each of the three lines determined by the three points contains at most c points of P . Motivated by a question of Erdös, and answering a question of de Zeeuw, we prove that there exists a constant c > 0such that P contains a c-ordinary triangle, provided that P is not contained in the union of two lines. Furthermore, the number of c-ordinary triangles in P is Ω(| P |). },
author = {Fulek, Radoslav and Mojarrad, Hossein and Naszódi, Márton and Solymosi, József and Stich, Sebastian and Szedlák, May},
issn = {09257721},
journal = {Computational Geometry: Theory and Applications},
pages = {28 -- 31},
publisher = {Elsevier},
title = {{On the existence of ordinary triangles}},
doi = {10.1016/j.comgeo.2017.07.002},
volume = {66},
year = {2017},
}
@article{794,
abstract = {We show that c-planarity is solvable in quadratic time for flat clustered graphs with three clusters if the combinatorial embedding of the underlying graph is fixed. In simpler graph-theoretical terms our result can be viewed as follows. Given a graph G with the vertex set partitioned into three parts embedded on a 2-sphere, our algorithm decides if we can augment G by adding edges without creating an edge-crossing so that in the resulting spherical graph the vertices of each part induce a connected sub-graph. We proceed by a reduction to the problem of testing the existence of a perfect matching in planar bipartite graphs. We formulate our result in a slightly more general setting of cyclic clustered graphs, i.e., the simple graph obtained by contracting each cluster, where we disregard loops and multi-edges, is a cycle.},
author = {Fulek, Radoslav},
journal = {Computational Geometry: Theory and Applications},
pages = {1 -- 13},
publisher = {Elsevier},
title = {{C-planarity of embedded cyclic c-graphs}},
doi = {10.1016/j.comgeo.2017.06.016},
volume = {66},
year = {2017},
}
@article{795,
abstract = {We introduce a common generalization of the strong Hanani–Tutte theorem and the weak Hanani–Tutte theorem: if a graph G has a drawing D in the plane where every pair of independent edges crosses an even number of times, then G has a planar drawing preserving the rotation of each vertex whose incident edges cross each other evenly in D. The theorem is implicit in the proof of the strong Hanani–Tutte theorem by Pelsmajer, Schaefer and Štefankovič. We give a new, somewhat simpler proof.},
author = {Fulek, Radoslav and Kynčl, Jan and Pálvölgyi, Dömötör},
issn = {10778926},
journal = {Electronic Journal of Combinatorics},
number = {3},
publisher = {International Press},
title = {{Unified Hanani Tutte theorem}},
volume = {24},
year = {2017},
}
@article{463,
abstract = {We investigate transient behaviors induced by magnetic fields on the dynamics of the flow of a ferrofluid in the gap between two concentric, independently rotating cylinders. Without applying any magnetic fields, we uncover emergence of flow states constituted by a combination of a localized spiral state (SPIl) in the top and bottom of the annulus and different multi-cell flow states (SPI2v, SPI3v) with toroidally closed vortices in the interior of the bulk (SPIl+2v = SPIl + SPI2v and SPIl+3v = SPIl + SPI3v). However, when a magnetic field is presented, we observe the transient behaviors between multi-cell states passing through two critical thresholds in a strength of an axial (transverse) magnetic field. Before the first critical threshold of a magnetic field strength, multi-stable states with different number of cells could be observed. After the first critical threshold, we find the transient behavior between the three- and two-cell flow states. For more strength of magnetic field or after the second critical threshold, we discover that multi-cell states are disappeared and a localized spiral state remains to be stimulated. The studied transient behavior could be understood by the investigation of various quantities including a modal kinetic energy, a mode amplitude of the radial velocity, wavenumber, angular momentum, and torque. In addition, the emergence of new flow states and the transient behavior between their states in ferrofluidic flows indicate that richer and potentially controllable dynamics through magnetic fields could be possible in ferrofluic flow.},
author = {Altmeyer, Sebastian and Do, Younghae and Ryu, Soorok},
issn = {10541500},
journal = {Chaos},
number = {11},
publisher = {AIP},
title = {{Transient behavior between multi-cell flow states in ferrofluidic Taylor-Couette flow}},
doi = {10.1063/1.5002771},
volume = {27},
year = {2017},
}
@article{464,
abstract = {The computation of the winning set for parity objectives and for Streett objectives in graphs as well as in game graphs are central problems in computer-aided verification, with application to the verification of closed systems with strong fairness conditions, the verification of open systems, checking interface compatibility, well-formedness of specifications, and the synthesis of reactive systems. We show how to compute the winning set on n vertices for (1) parity-3 (aka one-pair Streett) objectives in game graphs in time O(n5/2) and for (2) k-pair Streett objectives in graphs in time O(n2+nklogn). For both problems this gives faster algorithms for dense graphs and represents the first improvement in asymptotic running time in 15 years.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Loitzenbauer, Veronika},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {3},
publisher = {International Federation of Computational Logic},
title = {{Improved algorithms for parity and Streett objectives}},
doi = {10.23638/LMCS-13(3:26)2017},
volume = {13},
year = {2017},
}
@article{465,
abstract = {The edit distance between two words w 1 , w 2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w 1 to w 2 . The edit distance generalizes to languages L 1 , L 2 , where the edit distance from L 1 to L 2 is the minimal number k such that for every word from L 1 there exists a word in L 2 with edit distance at most k . We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1) deciding whether, for a given threshold k , the edit distance from a pushdown automaton to a finite automaton is at most k , and (2) deciding whether the edit distance from a pushdown automaton to a finite automaton is finite. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Ibsen-Jensen, Rasmus and Otop, Jan},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {3},
publisher = {International Federation of Computational Logic},
title = {{Edit distance for pushdown automata}},
doi = {10.23638/LMCS-13(3:23)2017},
volume = {13},
year = {2017},
}
@article{466,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem. },
author = {Chatterjee, Krishnendu and Křetínská, Zuzana and Kretinsky, Jan},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {2},
publisher = {International Federation of Computational Logic},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.23638/LMCS-13(2:15)2017},
volume = {13},
year = {2017},
}
@article{467,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata or in any other known decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata, which makes it possible to express important quantitative properties such as average response time. In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in runtime verification. We establish an almost-complete decidability picture for the basic decision problems about nested weighted automata and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {15293785},
journal = {ACM Transactions on Computational Logic (TOCL)},
number = {4},
publisher = {ACM},
title = {{Nested weighted automata}},
doi = {10.1145/3152769},
volume = {18},
year = {2017},
}
@article{470,
abstract = {This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios.},
author = {Jeschke, Stefan and Wojtan, Christopher J},
issn = {07300301},
journal = {ACM Transactions on Graphics},
number = {4},
publisher = {ACM},
title = {{Water wave packets}},
doi = {10.1145/3072959.3073678},
volume = {36},
year = {2017},
}
@article{471,
abstract = {We present a new algorithm for the statistical model checking of Markov chains with respect to unbounded temporal properties, including full linear temporal logic. The main idea is that we monitor each simulation run on the fly, in order to detect quickly if a bottom strongly connected component is entered with high probability, in which case the simulation run can be terminated early. As a result, our simulation runs are often much shorter than required by termination bounds that are computed a priori for a desired level of confidence on a large state space. In comparison to previous algorithms for statistical model checking our method is not only faster in many cases but also requires less information about the system, namely, only the minimum transition probability that occurs in the Markov chain. In addition, our method can be generalised to unbounded quantitative properties such as mean-payoff bounds. },
author = {Daca, Przemyslaw and Henzinger, Thomas A and Kretinsky, Jan and Petrov, Tatjana},
issn = {15293785},
journal = {ACM Transactions on Computational Logic (TOCL)},
number = {2},
publisher = {ACM},
title = {{Faster statistical model checking for unbounded temporal properties}},
doi = {10.1145/3060139},
volume = {18},
year = {2017},
}
@article{481,
abstract = {We introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist. Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.},
author = {Biedl, Therese and Huber, Stefan and Palfrader, Peter},
journal = {International Journal of Computational Geometry and Applications},
number = {3-4},
pages = {211 -- 229},
publisher = {World Scientific Publishing},
title = {{Planar matchings for weighted straight skeletons}},
doi = {10.1142/S0218195916600050},
volume = {26},
year = {2017},
}
@article{483,
abstract = {We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, W ~ N. All previous results concerning universality of non-Gaussian random matrices are for mean-field models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique ergodicity for band matrices.},
author = {Bourgade, Paul and Erdös, László and Yau, Horng and Yin, Jun},
issn = {10950761},
journal = {Advances in Theoretical and Mathematical Physics},
number = {3},
pages = {739 -- 800},
publisher = {International Press},
title = {{Universality for a class of random band matrices}},
doi = {10.4310/ATMP.2017.v21.n3.a5},
volume = {21},
year = {2017},
}
@article{484,
abstract = {We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.},
author = {Nam, Phan and Napiórkowski, Marcin M},
issn = {10950761},
journal = {Advances in Theoretical and Mathematical Physics},
number = {3},
pages = {683 -- 738},
publisher = {International Press},
title = {{Bogoliubov correction to the mean-field dynamics of interacting bosons}},
doi = {10.4310/ATMP.2017.v21.n3.a4},
volume = {21},
year = {2017},
}
@inproceedings{485,
abstract = {We present results on nonlinear electro-optical conversion of microwave radiation into the optical telecommunication band with more than 0.1% photon number conversion efficiency with MHz bandwidth, in a crystalline whispering gallery mode resonator},
author = {Rueda Sanchez, Alfredo R and Sedlmeir, Florian and Collodo, Michele and Vogl, Ulrich and Stiller, Birgit and Schunk, Gerhard and Strekalov, Dmitry and Marquardt, Christoph and Fink, Johannes M and Painter, Oskar and Leuchs, Gerd and Schwefel, Harald},
isbn = {978-155752820-9},
location = {Waikoloa, HI, USA},
publisher = {OSA},
title = {{Single sideband microwave to optical photon conversion-an-electro-optic-realization}},
doi = {10.1364/NLO.2017.NM3A.1},
volume = {F54},
year = {2017},
}
@article{486,
abstract = {Color texture reproduction in 3D printing commonly ignores volumetric light transport (cross-talk) between surface points on a 3D print. Such light diffusion leads to significant blur of details and color bleeding, and is particularly severe for highly translucent resin-based print materials. Given their widely varying scattering properties, this cross-talk between surface points strongly depends on the internal structure of the volume surrounding each surface point. Existing scattering-aware methods use simplified models for light diffusion, and often accept the visual blur as an immutable property of the print medium. In contrast, our work counteracts heterogeneous scattering to obtain the impression of a crisp albedo texture on top of the 3D print, by optimizing for a fully volumetric material distribution that preserves the target appearance. Our method employs an efficient numerical optimizer on top of a general Monte-Carlo simulation of heterogeneous scattering, supported by a practical calibration procedure to obtain scattering parameters from a given set of printer materials. Despite the inherent translucency of the medium, we reproduce detailed surface textures on 3D prints. We evaluate our system using a commercial, five-tone 3D print process and compare against the printer’s native color texturing mode, demonstrating that our method preserves high-frequency features well without having to compromise on color gamut.},
author = {Elek, Oskar and Sumin, Denis and Zhang, Ran and Weyrich, Tim and Myszkowski, Karol and Bickel, Bernd and Wilkie, Alexander and Krivanek, Jaroslav},
issn = {07300301},
journal = {ACM Transactions on Graphics},
number = {6},
publisher = {ACM},
title = {{Scattering-aware texture reproduction for 3D printing}},
doi = {10.1145/3130800.3130890},
volume = {36},
year = {2017},
}
@inproceedings{487,
abstract = {In this paper we study network architecture for unlicensed cellular networking for outdoor coverage in TV white spaces. The main technology proposed for TV white spaces is 802.11af, a Wi-Fi variant adapted for TV frequencies. However, 802.11af is originally designed for improved indoor propagation. We show that long links, typical for outdoor use, exacerbate known Wi-Fi issues, such as hidden and exposed terminal, and significantly reduce its efficiency. Instead, we propose CellFi, an alternative architecture based on LTE. LTE is designed for long-range coverage and throughput efficiency, but it is also designed to operate in tightly controlled and centrally managed networks. CellFi overcomes these problems by designing an LTE-compatible spectrum database component, mandatory for TV white space networking, and introducing an interference management component for distributed coordination. CellFi interference management is compatible with existing LTE mechanisms, requires no explicit communication between base stations, and is more efficient than CSMA for long links. We evaluate our design through extensive real world evaluation on of-the-shelf LTE equipment and simulations. We show that, compared to 802.11af, it increases coverage by 40% and reduces median flow completion times by 2.3x.},
author = {Baig, Ghufran and Radunovic, Bozidar and Alistarh, Dan-Adrian and Balkwill, Matthew and Karagiannis, Thomas and Qiu, Lili},
booktitle = {Proceedings of the 2017 13th International Conference on emerging Networking EXperiments and Technologies},
isbn = {978-145035422-6},
location = {Incheon, South Korea},
pages = {2 -- 14},
publisher = {ACM},
title = {{Towards unlicensed cellular networks in TV white spaces}},
doi = {10.1145/3143361.3143367},
year = {2017},
}
@article{512,
abstract = {The fixation probability is the probability that a new mutant introduced in a homogeneous population eventually takes over the entire population. The fixation probability is a fundamental quantity of natural selection, and known to depend on the population structure. Amplifiers of natural selection are population structures which increase the fixation probability of advantageous mutants, as compared to the baseline case of well-mixed populations. In this work we focus on symmetric population structures represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known has been the Star graph, and the existence of undirected graphs with stronger amplification properties has remained open for over a decade. In this work we present the Comet and Comet-swarm families of undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Cometswarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for fixed population size and at the limit of large populations, respectively. },
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak, Martin},
issn = {20452322},
journal = {Scientific Reports},
number = {1},
publisher = {Nature Publishing Group},
title = {{Amplification on undirected population structures: Comets beat stars}},
doi = {10.1038/s41598-017-00107-w},
volume = {7},
year = {2017},
}
@article{513,
abstract = {We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.},
author = {Klotz, Lukasz and Lemoult, Grégoire M and Frontczak, Idalia and Tuckerman, Laurette and Wesfreid, José},
journal = {Physical Review Fluids},
number = {4},
publisher = {American Physical Society},
title = {{Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence}},
doi = {10.1103/PhysRevFluids.2.043904},
volume = {2},
year = {2017},
}
@article{514,
abstract = {Orientation in space is represented in specialized brain circuits. Persistent head direction signals are transmitted from anterior thalamus to the presubiculum, but the identity of the presubicular target neurons, their connectivity and function in local microcircuits are unknown. Here, we examine how thalamic afferents recruit presubicular principal neurons and Martinotti interneurons, and the ensuing synaptic interactions between these cells. Pyramidal neuron activation of Martinotti cells in superficial layers is strongly facilitating such that high-frequency head directional stimulation efficiently unmutes synaptic excitation. Martinotti-cell feedback plays a dual role: precisely timed spikes may not inhibit the firing of in-tune head direction cells, while exerting lateral inhibition. Autonomous attractor dynamics emerge from a modelled network implementing wiring motifs and timing sensitive synaptic interactions in the pyramidal - Martinotti-cell feedback loop. This inhibitory microcircuit is therefore tuned to refine and maintain head direction information in the presubiculum.},
author = {Simonnet, Jean and Nassar, Mérie and Stella, Federico and Cohen, Ivan and Mathon, Bertrand and Boccara, Charlotte and Miles, Richard and Fricker, Desdemona},
issn = {20411723},
journal = {Nature Communications},
publisher = {Nature Publishing Group},
title = {{Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum}},
doi = {10.1038/ncomms16032},
volume = {8},
year = {2017},
}
@article{515,
abstract = {The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII2 and CIV (SC I+III2+IV, known as the respirasome), as well as with CIII2 alone (SC I+III2). CIII2 forms a supercomplex with CIV (SC III2+IV) and CV forms dimers (CV2). Recent cryo-EM studies have revealed the structures of SC I+III2+IV and SC I+III2. Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.},
author = {Letts, James A and Sazanov, Leonid A},
issn = {15459993},
journal = {Nature Structural and Molecular Biology},
number = {10},
pages = {800 -- 808},
publisher = {Nature Publishing Group},
title = {{Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain}},
doi = {10.1038/nsmb.3460},
volume = {24},
year = {2017},
}
@article{520,
abstract = {Cyanobacteria are mostly engineered to be sustainable cell-factories by genetic manipulations alone. Here, by modulating the concentration of allosteric effectors, we focus on increasing product formation without further burdening the cells with increased expression of enzymes. Resorting to a novel 96-well microplate cultivation system for cyanobacteria, and using lactate-producing strains of Synechocystis PCC6803 expressing different l-lactate dehydrogenases (LDH), we titrated the effect of 2,5-anhydro-mannitol supplementation. The latter acts in cells as a nonmetabolizable analogue of fructose 1,6-bisphosphate, a known allosteric regulator of one of the tested LDHs. In this strain (SAA023), we achieved over 2-fold increase of lactate productivity. Furthermore, we observed that as carbon is increasingly deviated during growth toward product formation, there is an increased fixation rate in the population of spontaneous mutants harboring an impaired production pathway. This is a challenge in the development of green cell factories, which may be countered by the incorporation in biotechnological processes of strategies such as the one pioneered here.},
author = {Du, Wei and Angermayr, Andreas and Jongbloets, Joeri and Molenaar, Douwe and Bachmann, Herwig and Hellingwerf, Klaas and Branco Dos Santos, Filipe},
issn = {21615063},
journal = {ACS Synthetic Biology},
number = {3},
pages = {395 -- 401},
publisher = {American Chemical Society},
title = {{Nonhierarchical flux regulation exposes the fitness burden associated with lactate production in Synechocystis sp. PCC6803}},
doi = {10.1021/acssynbio.6b00235},
volume = {6},
year = {2017},
}
@article{521,
abstract = {Let X and Y be proper metric spaces. We show that a coarsely n-to-1 map f:X→Y induces an n-to-1 map of Higson coronas. This viewpoint turns out to be successful in showing that the classical dimension raising theorems hold in large scale; that is, if f:X→Y is a coarsely n-to-1 map between proper metric spaces X and Y then asdim(Y)≤asdim(X)+n−1. Furthermore we introduce coarsely open coarsely n-to-1 maps, which include the natural quotient maps via a finite group action, and prove that they preserve the asymptotic dimension.},
author = {Austin, Kyle and Virk, Ziga},
issn = {01668641},
journal = {Topology and its Applications},
pages = {45 -- 57},
publisher = {Elsevier},
title = {{Higson compactification and dimension raising}},
doi = {10.1016/j.topol.2016.10.005},
volume = {215},
year = {2017},
}
@article{534,
abstract = {We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.},
author = {Burton, Benjamin and De Mesmay, Arnaud N and Wagner, Uli},
issn = {01795376},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {871 -- 888},
publisher = {Springer},
title = {{Finding non-orientable surfaces in 3-Manifolds}},
doi = {10.1007/s00454-017-9900-0},
volume = {58},
year = {2017},
}
@article{538,
abstract = {Optogenetik und Photopharmakologie ermöglichen präzise räumliche und zeitliche Kontrolle von Proteinwechselwirkung und -funktion in Zellen und Tieren. Optogenetische Methoden, die auf grünes Licht ansprechen und zum Trennen von Proteinkomplexen geeignet sind, sind nichtweitläufig verfügbar, würden jedoch mehrfarbige Experimente zur Beantwortung von biologischen Fragestellungen ermöglichen. Hier demonstrieren wir die Verwendung von Cobalamin(Vitamin B12)-bindenden Domänen von bakteriellen CarH-Transkriptionsfaktoren zur Grünlicht-induzierten Dissoziation von Rezeptoren. Fusioniert mit dem Fibroblasten-W achstumsfaktor-Rezeptor 1 führten diese im Dunkeln in kultivierten Zellen zu Signalaktivität durch Oligomerisierung, welche durch Beleuchten umgehend aufgehoben wurde. In Zebrafischembryonen, die einen derartigen Rezeptor exprimieren, ermöglichte grünes Licht die Kontrolle über abnormale Signalaktivität während der Embryonalentwicklung. },
author = {Kainrath, Stephanie and Stadler, Manuela and Gschaider-Reichhart, Eva and Distel, Martin and Janovjak, Harald L},
journal = {Angewandte Chemie},
number = {16},
pages = {4679 -- 4682},
publisher = {Wiley},
title = {{Grünlicht-induzierte Rezeptorinaktivierung durch Cobalamin-bindende Domänen}},
doi = {10.1002/ange.201611998},
volume = {129},
year = {2017},
}
@article{540,
abstract = {RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/-mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.},
author = {Khamina, Kseniya and Lercher, Alexander and Caldera, Michael and Schliehe, Christopher and Vilagos, Bojan and Sahin, Mehmet and Kosack, Lindsay and Bhattacharya, Anannya and Májek, Peter and Stukalov, Alexey and Sacco, Roberto and James, Leo and Pinschewer, Daniel and Bennett, Keiryn and Menche, Jörg and Bergthaler, Andreas},
issn = {15537366},
journal = {PLoS Pathogens},
number = {12},
publisher = {Public Library of Science},
title = {{Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein}},
doi = {10.1371/journal.ppat.1006758},
volume = {13},
year = {2017},
}
@article{541,
abstract = {While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed.},
author = {Nikolic, Nela and Schreiber, Frank and Dal Co, Alma and Kiviet, Daniel and Bergmiller, Tobias and Littmann, Sten and Kuypers, Marcel and Ackermann, Martin},
issn = {15537390},
journal = {PLoS Genetics},
number = {12},
publisher = {Public Library of Science},
title = {{Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations}},
doi = {10.1371/journal.pgen.1007122},
volume = {13},
year = {2017},
}
@inbook{545,
abstract = {Development of vascular tissue is a remarkable example of intercellular communication and coordinated development involving hormonal signaling and tissue polarity. Thus far, studies on vascular patterning and regeneration have been conducted mainly in trees—woody plants—with a well-developed layer of vascular cambium and secondary tissues. Trees are difficult to use as genetic models, i.e., due to long generation time, unstable environmental conditions, and lack of available mutants and transgenic lines. Therefore, the use of the main genetic model plant Arabidopsis thaliana (L.) Heynh., with a wealth of available marker and transgenic lines, provides a unique opportunity to address molecular mechanism of vascular tissue formation and regeneration. With specific treatments, the tiny weed Arabidopsis can serve as a model to understand the growth of mighty trees and interconnect a tree physiology with molecular genetics and cell biology of Arabidopsis.},
author = {Mazur, Ewa and Friml, Jirí},
booktitle = {Plant Engineering},
editor = {Jurić, Snježana},
pages = {113 -- 140},
publisher = {InTech},
title = {{Vascular tissue development and regeneration in the model plant arabidopsis}},
doi = {10.5772/intechopen.69712},
year = {2017},
}
@techreport{5450,
abstract = {In this report the implementation of the institutional data repository IST DataRep at IST Austria will be covered: Starting with the research phase when requirements for a repository were established, the procedure of choosing a repository-software and its customization based on the results of user-testings will be discussed. Followed by reflections on the marketing strategies in regard of impact, and at the end sharing some experiences of one year operating IST DataRep.},
author = {Barbara Petritsch},
publisher = {IST Austria},
title = {{Implementing the institutional data repository IST DataRep}},
year = {2017},
}
@misc{5455,
abstract = {A fundamental algorithmic problem at the heart of static analysis is Dyck reachability. The input is a graphwhere the edges are labeled with different types of opening and closing parentheses, and the reachabilityinformation is computed via paths whose parentheses are properly matched. We present new results for Dyckreachability problems with applications to alias analysis and data-dependence analysis. Our main contributions,that include improved upper bounds as well as lower bounds that establish optimality guarantees, are asfollows:First, we consider Dyck reachability on bidirected graphs, which is the standard way of performing field-sensitive points-to analysis. Given a bidirected graph withnnodes andmedges, we present: (i) an algorithmwith worst-case running timeO(m+n·α(n)), whereα(n)is the inverse Ackermann function, improving thepreviously knownO(n2)time bound; (ii) a matching lower bound that shows that our algorithm is optimalwrt to worst-case complexity; and (iii) an optimal average-case upper bound ofO(m)time, improving thepreviously knownO(m·logn)bound.Second, we consider the problem of context-sensitive data-dependence analysis, where the task is to obtainanalysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almostlinear time, after which the contribution of the library in the complexity of the client analysis is only linear,and only wrt the number of call sites.Third, we prove that combinatorial algorithms for Dyck reachability on general graphs with truly sub-cubic bounds cannot be obtained without obtaining sub-cubic combinatorial algorithms for Boolean MatrixMultiplication, which is a long-standing open problem. Thus we establish that the existing combinatorialalgorithms for Dyck reachability are (conditionally) optimal for general graphs. We also show that the samehardness holds for graphs of constant treewidth.Finally, we provide a prototype implementation of our algorithms for both alias analysis and data-dependenceanalysis. Our experimental evaluation demonstrates that the new algorithms significantly outperform allexisting methods on the two problems, over real-world benchmarks.},
author = {Chatterjee, Krishnendu and Choudhary, Bhavya and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {37},
publisher = {IST Austria},
title = {{Optimal Dyck reachability for data-dependence and alias analysis}},
doi = {10.15479/AT:IST-2017-870-v1-1},
year = {2017},
}
@misc{5456,
abstract = {We present a new dynamic partial-order reduction method for stateless model checking of concurrent programs. A common approach for exploring program behaviors relies on enumerating the traces of the program, without storing the visited states (aka stateless exploration). As the number of distinct traces grows exponentially, dynamic partial-order reduction (DPOR) techniques have been successfully used to partition the space of traces into equivalence classes (Mazurkiewicz partitioning), with the goal of exploring only few representative traces from each class.
We introduce a new equivalence on traces under sequential consistency semantics, which we call the observation equivalence. Two traces are observationally equivalent if every read event observes the same write event in both traces. While the traditional Mazurkiewicz equivalence is control-centric, our new definition is data-centric. We show that our observation equivalence is coarser than the Mazurkiewicz equivalence, and in many cases even exponentially coarser. We devise a DPOR exploration of the trace space, called data-centric DPOR, based on the observation equivalence.
1. For acyclic architectures, our algorithm is guaranteed to explore exactly one representative trace from each observation class, while spending polynomial time per class. Hence, our algorithm is optimal wrt the observation equivalence, and in several cases explores exponentially fewer traces than any enumerative method based on the Mazurkiewicz equivalence.
2. For cyclic architectures, we consider an equivalence between traces which is finer than the observation equivalence; but coarser than the Mazurkiewicz equivalence, and in some cases is exponentially coarser. Our data-centric DPOR algorithm remains optimal under this trace equivalence.
Finally, we perform a basic experimental comparison between the existing Mazurkiewicz-based DPOR and our data-centric DPOR on a set of academic benchmarks. Our results show a significant reduction in both running time and the number of explored equivalence classes.},
author = {Chalupa, Marek and Chatterjee, Krishnendu and Pavlogiannis, Andreas and Sinha, Nishant and Vaidya, Kapil},
issn = {2664-1690},
pages = {36},
publisher = {IST Austria},
title = {{Data-centric dynamic partial order reduction}},
doi = {10.15479/AT:IST-2017-872-v1-1},
year = {2017},
}
@article{548,
abstract = {In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.},
author = {De Martino, Daniele},
issn = {24700045},
journal = {Physical Review E},
number = {6},
publisher = {American Physiological Society},
title = {{Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes}},
doi = {10.1103/PhysRevE.96.060401},
volume = {96},
year = {2017},
}
@inproceedings{549,
abstract = {Model checking is usually based on a comprehensive traversal of the state space. Causality-based model checking is a radically different approach that instead analyzes the cause-effect relationships in a program. We give an overview on a new class of model checking algorithms that capture the causal relationships in a special data structure called concurrent traces. Concurrent traces identify key events in an execution history and link them through their cause-effect relationships. The model checker builds a tableau of concurrent traces, where the case splits represent different causal explanations of a hypothetical error. Causality-based model checking has been implemented in the ARCTOR tool, and applied to previously intractable multi-threaded benchmarks.},
author = {Finkbeiner, Bernd and Kupriyanov, Andrey},
booktitle = {Electronic Proceedings in Theoretical Computer Science},
issn = {20752180},
location = {Uppsala, Sweden},
pages = {31 -- 38},
publisher = {Open Publishing Association},
title = {{Causality-based model checking}},
doi = {10.4204/EPTCS.259.3},
volume = {259},
year = {2017},
}
@article{550,
abstract = {For large random matrices X with independent, centered entries but not necessarily identical variances, the eigenvalue density of XX* is well-approximated by a deterministic measure on ℝ. We show that the density of this measure has only square and cubic-root singularities away from zero. We also extend the bulk local law in [5] to the vicinity of these singularities.},
author = {Alt, Johannes},
issn = {1083589X},
journal = {Electronic Communications in Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Singularities of the density of states of random Gram matrices}},
doi = {10.1214/17-ECP97},
volume = {22},
year = {2017},
}
@inproceedings{551,
abstract = {Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when r is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n2/ log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {978-395977046-0},
location = {Aalborg, Denmark},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Faster Monte Carlo algorithms for fixation probability of the Moran process on undirected graphs}},
doi = {10.4230/LIPIcs.MFCS.2017.61},
volume = {83},
year = {2017},
}
@inproceedings{552,
abstract = {Graph games provide the foundation for modeling and synthesis of reactive processes. Such games are played over graphs where the vertices are controlled by two adversarial players. We consider graph games where the objective of the first player is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a meanpayoff condition). There are two variants of the problem, namely, the threshold problem where the quantitative goal is to ensure that the mean-payoff value is above a threshold, and the value problem where the quantitative goal is to ensure the optimal mean-payoff value; in both cases ensuring the qualitative parity objective. The previous best-known algorithms for game graphs with n vertices, m edges, parity objectives with d priorities, and maximal absolute reward value W for mean-payoff objectives, are as follows: O(nd+1 . m . w) for the threshold problem, and O(nd+2 · m · W) for the value problem. Our main contributions are faster algorithms, and the running times of our algorithms are as follows: O(nd-1 · m ·W) for the threshold problem, and O(nd · m · W · log(n · W)) for the value problem. For mean-payoff parity objectives with two priorities, our algorithms match the best-known bounds of the algorithms for mean-payoff games (without conjunction with parity objectives). Our results are relevant in synthesis of reactive systems with both functional requirement (given as a qualitative objective) and performance requirement (given as a quantitative objective).},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Svozil, Alexander},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {978-395977046-0},
location = {Aalborg, Denmark},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Faster algorithms for mean payoff parity games}},
doi = {10.4230/LIPIcs.MFCS.2017.39},
volume = {83},
year = {2017},
}
@inproceedings{553,
abstract = {We consider two player, zero-sum, finite-state concurrent reachability games, played for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. Player 1 wins iff a designated goal state is eventually visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed. Our main results are as follows: We show that: (i) the optimal bound on the patience of optimal and -optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. },
author = {Chatterjee, Krishnendu and Hansen, Kristofer and Ibsen-Jensen, Rasmus},
booktitle = {Leibniz International Proceedings in Informatics},
isbn = {978-395977046-0},
location = {Aalborg, Denmark},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Strategy complexity of concurrent safety games}},
doi = {10.4230/LIPIcs.MFCS.2017.55},
volume = {83},
year = {2017},
}
@misc{5559,
abstract = {Strong amplifiers of natural selection},
author = {Pavlogiannis, Andreas and Tkadlec, Josef and Chatterjee, Krishnendu and Nowak , Martin},
keywords = {natural selection},
publisher = {IST Austria},
title = {{Strong amplifiers of natural selection}},
doi = {10.15479/AT:ISTA:51},
year = {2017},
}
@misc{5560,
abstract = {This repository contains the data collected for the manuscript "Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity".
The data is compressed into a single archive. Within the archive, different folders correspond to figures of the main text and the SI of the related publication.
Data is saved as plain text, with each folder containing a separate readme file describing the format. Typically, the data is from fluorescence microscopy measurements of single cells growing in a microfluidic "mother machine" device, and consists of relevant values (primarily arbitrary unit or normalized fluorescence measurements, and division times / growth rates) after raw microscopy images have been processed, segmented, and their features extracted, as described in the methods section of the related publication.},
author = {Bergmiller, Tobias and Andersson, Anna M and Tomasek, Kathrin and Balleza, Enrique and Kiviet, Daniel and Hauschild, Robert and Tkacik, Gasper and Guet, Calin C},
keywords = {single cell microscopy, mother machine microfluidic device, AcrAB-TolC pump, multi-drug efflux, Escherichia coli},
publisher = {IST Austria},
title = {{Biased partitioning of the multi-drug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity}},
doi = {doi:10.15479/AT:ISTA:53},
year = {2017},
}
@misc{5561,
abstract = {Graph matching problems as described in "Active Graph Matching for Automatic Joint Segmentation and Annotation of C. Elegans." by Kainmueller, Dagmar and Jug, Florian and Rother, Carsten and Myers, Gene, MICCAI 2014. Problems are in OpenGM2 hdf5 format (see http://hciweb2.iwr.uni-heidelberg.de/opengm/) and a custom text format used by the feature matching solver described in "Feature Correspondence via Graph Matching: Models and Global Optimization." by Lorenzo Torresani, Vladimir Kolmogorov and Carsten Rother, ECCV 2008, code at http://pub.ist.ac.at/~vnk/software/GraphMatching-v1.02.src.zip. },
author = {Kainmueller, Dagmar and Jug, Florian and Rother, Carsten and Meyers, Gene},
keywords = {graph matching, feature matching, QAP, MAP-inference},
publisher = {IST Austria},
title = {{Graph matching problems for annotating C. Elegans}},
doi = {10.15479/AT:ISTA:57},
year = {2017},
}
@misc{5562,
abstract = {This data was collected as part of the study [1]. It consists of preprocessed multi-electrode array recording from 160 salamander retinal ganglion cells responding to 297 repeats of a 19 s natural movie. The data is available in two formats: (1) a .mat file containing an array with dimensions “number of repeats” x “number of neurons” x “time in a repeat”; (2) a zipped .txt file containing the same data represented as an array with dimensions “number of neurons” x “number of samples”, where the number of samples is equal to the product of the number of repeats and timebins within a repeat. The time dimension is divided into 20 ms time windows, and the array is binary indicating whether a given cell elicited at least one spike in a given time window during a particular repeat. See the reference below for details regarding collection and preprocessing:
[1] Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ II. Searching for Collective Behavior in a Large Network of Sensory Neurons. PLoS Comput Biol. 2014;10(1):e1003408.},
author = {Marre, Olivier and Tkacik, Gasper and Amodei, Dario and Schneidman, Elad and Bialek, William and Berry, Michael},
keywords = {multi-electrode recording, retinal ganglion cells},
publisher = {IST Austria},
title = {{Multi-electrode array recording from salamander retinal ganglion cells}},
doi = {10.15479/AT:ISTA:61},
year = {2017},
}
@misc{5563,
abstract = {MATLAB code and processed datasets available for reproducing the results in:
Lukačišin, M.*, Landon, M.*, Jajoo, R*. (2016) Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast.
*equal contributions},
author = {Lukacisin, Martin},
publisher = {IST Austria},
title = {{MATLAB analysis code for 'Sequence-Specific Thermodynamic Properties of Nucleic Acids Influence Both Transcriptional Pausing and Backtracking in Yeast'}},
doi = {10.15479/AT:ISTA:64},
year = {2017},
}
@misc{5564,
abstract = {Compressed Fastq files with whole-genome sequencing data of IS-wt strain D and clones from four evolved populations (A11, C08, C10, D08). Information on this data collection is available in the Methods Section of the primary publication.},
author = {Steinrück, Magdalena and Guet, Calin C},
publisher = {IST Austria},
title = {{Fastq files for "Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection"}},
doi = {10.15479/AT:ISTA:65},
year = {2017},
}
@misc{5565,
abstract = {One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions.
The Video is licensed under a CC BY NC ND license. },
author = {Von Wangenheim, Daniel and Hauschild, Robert and Friml, Jirí},
publisher = {IST Austria},
title = {{Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel}},
doi = {10.15479/AT:ISTA:66},
year = {2017},
}
@misc{5566,
abstract = {Current minimal version of TipTracker},
author = {Hauschild, Robert},
keywords = {tool, tracking, confocal microscopy},
publisher = {IST Austria},
title = {{Live tracking of moving samples in confocal microscopy for vertically grown roots}},
doi = {10.15479/AT:ISTA:69},
year = {2017},
}
@misc{5567,
abstract = {Immunological synapse DC-Tcells},
author = {Leithner, Alexander F},
keywords = {Immunological synapse},
publisher = {IST Austria},
title = {{Immunological synapse DC-Tcells}},
doi = {10.15479/AT:ISTA:71},
year = {2017},
}
@misc{5568,
abstract = {Includes source codes, test cases, and example data used in the thesis Brittle Fracture Simulation with Boundary Elements for Computer Graphics. Also includes pre-built binaries of the HyENA library, but not sources - please contact the HyENA authors to obtain these sources if required (https://mech.tugraz.at/hyena)},
author = {Hahn, David},
keywords = {Boundary elements, brittle fracture, computer graphics, fracture simulation},
publisher = {IST Austria},
title = {{Source codes: Brittle fracture simulation with boundary elements for computer graphics}},
doi = {10.15479/AT:ISTA:73},
year = {2017},
}
@article{557,
abstract = {PURPOSE. Gene therapy of retinal ganglion cells (RGCs) has promise as a powerful therapeutic for the rescue and regeneration of these cells after optic nerve damage. However, early after damage, RGCs undergo atrophic changes, including gene silencing. It is not known if these changes will deleteriously affect transduction and transgene expression, or if the therapeutic protein can influence reactivation of the endogenous genome. METHODS. Double-transgenic mice carrying a Rosa26-(LoxP)-tdTomato reporter, and a mutant allele for the proapoptotic Bax gene were reared. The Bax mutant blocks apoptosis, but RGCs still exhibit nuclear atrophy and gene silencing. At times ranging from 1 hour to 4 weeks after optic nerve crush (ONC), eyes received an intravitreal injection of AAV2 virus carrying the Cre recombinase. Successful transduction was monitored by expression of the tdTomato reporter. Immunostaining was used to localize tdTomato expression in select cell types. RESULTS. Successful transduction of RGCs was achieved at all time points after ONC using AAV2 expressing Cre from the phosphoglycerate kinase (Pgk) promoter, but not the CMV promoter. ONC promoted an increase in the transduction of cell types in the inner nuclear layer, including Müller cells and rod bipolar neurons. There was minimal evidence of transduction of amacrine cells and astrocytes in the inner retina or optic nerve. CONCLUSIONS. Damaged RGCs can be transduced and at least some endogenous genes can be subsequently activated. Optic nerve damage may change retinal architecture to allow greater penetration of an AAV2 virus to transduce several additional cell types in the inner nuclear layer.},
author = {Nickells, Robert and Schmitt, Heather and Maes, Margaret E and Schlamp, Cassandra},
issn = {01460404},
journal = {Investigative Ophthalmology and Visual Science},
number = {14},
pages = {6091 -- 6104},
publisher = {Association for Research in Vision and Ophthalmology Inc.},
title = {{AAV2 mediated transduction of the mouse retina after optic nerve injury}},
doi = {10.1167/iovs.17-22634},
volume = {58},
year = {2017},
}
@misc{5570,
abstract = {Matlab script to calculate the forward migration indexes (/) from TrackMate spot-statistics files.},
author = {Hauschild, Robert},
keywords = {Cell migration, tracking, forward migration index, FMI},
publisher = {IST Austria},
title = {{Forward migration indexes}},
doi = {10.15479/AT:ISTA:75},
year = {2017},
}
@misc{5571,
abstract = {This folder contains all the data used in each of the main figures of "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology" (Kelemen, R., Vicoso, B.), as well as in the supplementary figures.
},
author = {Vicoso, Beatriz},
publisher = {IST Austria},
title = {{Data for "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology"}},
doi = {10.15479/AT:ISTA:78},
year = {2017},
}
@misc{5572,
abstract = {Code described in the Supplementary Methods of "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology" (Kelemen, R., Vicoso, B.)},
author = {Vicoso, Beatriz},
publisher = {IST Austria},
title = {{Code for "The genomic characterization of the t-haplotype, a mouse meiotic driver, highlights its complex history and specialized biology"}},
doi = {10.15479/AT:ISTA:79 },
year = {2017},
}
@article{558,
abstract = {Immune specificity is the degree to which a host’s immune system discriminates among various pathogens or antigenic variants. Vertebrate immune memory is highly specific due to antibody responses. On the other hand, some invertebrates show immune priming, i.e. improved survival after secondary exposure to a previously encountered pathogen. Until now, specificity of priming has only been demonstrated via the septic infection route or when live pathogens were used for priming. Therefore, we tested for specificity in the oral priming route in the red flour beetle, Tribolium castaneum. For priming, we used pathogen-free supernatants derived from three different strains of the entomopathogen, Bacillus thuringiensis, which express different Cry toxin variants known for their toxicity against this beetle. Subsequent exposure to the infective spores showed that oral priming was specific for two naturally occurring strains, while a third engineered strain did not induce any priming effect. Our data demonstrate that oral immune priming with a non-infectious bacterial agent can be specific, but the priming effect is not universal across all bacterial strains.},
author = {Futo, Momir and Sell, Marie and Kutzer, Megan and Kurtz, Joachim},
issn = {17449561},
journal = {Biology Letters},
number = {12},
publisher = {Royal Society, The},
title = {{Specificity of oral immune priming in the red flour beetle Tribolium castaneum}},
doi = {10.1098/rsbl.2017.0632},
volume = {13},
year = {2017},
}
@inproceedings{559,
abstract = {Proofs of space (PoS) were suggested as more ecological and economical alternative to proofs of work, which are currently used in blockchain designs like Bitcoin. The existing PoS are based on rather sophisticated graph pebbling lower bounds. Much simpler and in several aspects more efficient schemes based on inverting random functions have been suggested, but they don’t give meaningful security guarantees due to existing time-memory trade-offs. In particular, Hellman showed that any permutation over a domain of size N can be inverted in time T by an algorithm that is given S bits of auxiliary information whenever (Formula presented). For functions Hellman gives a weaker attack with S2· T≈ N2 (e.g., S= T≈ N2/3). To prove lower bounds, one considers an adversary who has access to an oracle f: [ N] → [N] and can make T oracle queries. The best known lower bound is S· T∈ Ω(N) and holds for random functions and permutations. We construct functions that provably require more time and/or space to invert. Specifically, for any constant k we construct a function [N] → [N] that cannot be inverted unless Sk· T∈ Ω(Nk) (in particular, S= T≈ (Formula presented). Our construction does not contradict Hellman’s time-memory trade-off, because it cannot be efficiently evaluated in forward direction. However, its entire function table can be computed in time quasilinear in N, which is sufficient for the PoS application. Our simplest construction is built from a random function oracle g: [N] × [N] → [ N] and a random permutation oracle f: [N] → N] and is defined as h(x) = g(x, x′) where f(x) = π(f(x′)) with π being any involution without a fixed point, e.g. flipping all the bits. For this function we prove that any adversary who gets S bits of auxiliary information, makes at most T oracle queries, and inverts h on an ϵ fraction of outputs must satisfy S2· T∈ Ω(ϵ2N2).},
author = {Abusalah, Hamza M and Alwen, Joel F and Cohen, Bram and Khilko, Danylo and Pietrzak, Krzysztof Z and Reyzin, Leonid},
isbn = {978-331970696-2},
location = {Hong Kong, China},
pages = {357 -- 379},
publisher = {Springer},
title = {{Beyond Hellman’s time-memory trade-offs with applications to proofs of space}},
doi = {10.1007/978-3-319-70697-9_13},
volume = {10625},
year = {2017},
}
@article{560,
abstract = {In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14, 1477–1500 (doi:10.4310/CMS.2016.v14. n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ? {4, 5, . . .}, there exist d-dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two (d = 2) and three (d = 3) space dimensions.},
author = {Gerencser, Mate and Jentzen, Arnulf and Salimova, Diyora},
issn = {13645021},
journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
number = {2207},
publisher = {Royal Society of London},
title = {{On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions}},
doi = {10.1098/rspa.2017.0104},
volume = {473},
year = {2017},
}
@article{561,
abstract = {Restriction–modification systems are widespread genetic elements that protect bacteria from bacteriophage infections by recognizing and cleaving heterologous DNA at short, well-defined sequences called restriction sites. Bioinformatic evidence shows that restriction sites are significantly underrepresented in bacteriophage genomes, presumably because bacteriophages with fewer restriction sites are more likely to escape cleavage by restriction–modification systems. However, how mutations in restriction sites affect the likelihood of bacteriophage escape is unknown. Using the bacteriophage l and the restriction–modification system EcoRI, we show that while mutation effects at different restriction sites are unequal, they are independent. As a result, the probability of bacteriophage escape increases with each mutated restriction site. Our results experimentally support the role of restriction site avoidance as a response to selection imposed by restriction–modification systems and offer an insight into the events underlying the process of bacteriophage escape.},
author = {Pleska, Maros and Guet, Calin C},
issn = {17449561},
journal = {Biology Letters},
number = {12},
publisher = {Royal Society, The},
title = {{Effects of mutations in phage restriction sites during escape from restriction–modification}},
doi = {10.1098/rsbl.2017.0646},
volume = {13},
year = {2017},
}
@book{567,
abstract = {This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality.
},
author = {Erdös, László and Yau, Horng},
isbn = {9781470436483},
pages = {226},
publisher = {American Mathematical Society},
title = {{A dynamical approach to random matrix theory}},
volume = {28},
year = {2017},
}
@article{568,
abstract = {We study robust properties of zero sets of continuous maps f: X → ℝn. Formally, we analyze the family Z< r(f) := (g-1(0): ||g - f|| < r) of all zero sets of all continuous maps g closer to f than r in the max-norm. All of these sets are outside A := (x: |f(x)| ≥ r) and we claim that Z< r(f) is fully determined by A and an element of a certain cohomotopy group which (by a recent result) is computable whenever the dimension of X is at most 2n - 3. By considering all r > 0 simultaneously, the pointed cohomotopy groups form a persistence module-a structure leading to persistence diagrams as in the case of persistent homology or well groups. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C).},
author = {Franek, Peter and Krcál, Marek},
issn = {15320073},
journal = {Homology, Homotopy and Applications},
number = {2},
pages = {313 -- 342},
publisher = {International Press},
title = {{Persistence of zero sets}},
doi = {10.4310/HHA.2017.v19.n2.a16},
volume = {19},
year = {2017},
}
@article{569,
abstract = {The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.},
author = {Spira, Felix and Cuylen Haering, Sara and Mehta, Shalin and Samwer, Matthias and Reversat, Anne and Verma, Amitabh and Oldenbourg, Rudolf and Sixt, Michael K and Gerlich, Daniel},
issn = {2050084X},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments}},
doi = {10.7554/eLife.30867},
volume = {6},
year = {2017},
}
@article{570,
abstract = {Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independently, and then simultaneously, mutating a transcription factor and the associated promoter it represses. We find that the system distribution exhibits increased phenotypic variation compared to individual component distributions - an effect arising from intermolecular epistasis between the transcription factor and its DNA-binding site. In large part, this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory system and could therefore be a common feature in prokaryotes. Counter-intuitively, intermolecular epistasis can alleviate the constraints of individual components, thereby increasing phenotypic variation that selection could act on and facilitating adaptive evolution. },
author = {Lagator, Mato and Sarikas, Srdjan and Acar, Hande and Bollback, Jonathan P and Guet, Calin C},
issn = {2050084X},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Regulatory network structure determines patterns of intermolecular epistasis}},
doi = {10.7554/eLife.28921},
volume = {6},
year = {2017},
}
@article{571,
abstract = {Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection. In addition to their role in thrombosis and hemostasis, platelets can also migrate to sites of infection to help trap bacteria and clear the vascular surface.},
author = {Gärtner, Florian R and Ahmad, Zerkah and Rosenberger, Gerhild and Fan, Shuxia and Nicolai, Leo and Busch, Benjamin and Yavuz, Gökce and Luckner, Manja and Ishikawa Ankerhold, Hellen and Hennel, Roman and Benechet, Alexandre and Lorenz, Michael and Chandraratne, Sue and Schubert, Irene and Helmer, Sebastian and Striednig, Bianca and Stark, Konstantin and Janko, Marek and Böttcher, Ralph and Verschoor, Admar and Leon, Catherine and Gachet, Christian and Gudermann, Thomas and Mederos Y Schnitzler, Michael and Pincus, Zachary and Iannacone, Matteo and Haas, Rainer and Wanner, Gerhard and Lauber, Kirsten and Sixt, Michael K and Massberg, Steffen},
issn = {00928674},
journal = {Cell Press},
number = {6},
pages = {1368 -- 1382},
publisher = {Cell Press},
title = {{Migrating platelets are mechano scavengers that collect and bundle bacteria}},
doi = {10.1016/j.cell.2017.11.001},
volume = {171},
year = {2017},
}
@article{572,
abstract = {In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.},
author = {Olatunji, Damilola and Geelen, Danny and Verstraeten, Inge},
journal = {International Journal of Molecular Sciences},
number = {12},
publisher = {MDPI},
title = {{Control of endogenous auxin levels in plant root development}},
doi = {10.3390/ijms18122587},
volume = {18},
year = {2017},
}
@article{6013,
abstract = {The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron’s classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the “tunnel exit.”},
author = {Camus, Nicolas and Yakaboylu, Enderalp and Fechner, Lutz and Klaiber, Michael and Laux, Martin and Mi, Yonghao and Hatsagortsyan, Karen Z. and Pfeifer, Thomas and Keitel, Christoph H. and Moshammer, Robert},
issn = {1079-7114},
journal = {Physical Review Letters},
number = {2},
publisher = {American Physical Society},
title = {{Experimental evidence for quantum tunneling time}},
doi = {10.1103/PhysRevLett.119.023201},
volume = {119},
year = {2017},
}
@inbook{604,
abstract = {In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies.},
author = {Lemeshko, Mikhail and Schmidt, Richard},
booktitle = {Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero },
editor = {Dulieu, Oliver and Osterwalder, Andreas},
issn = {20413181},
pages = {444 -- 495},
publisher = {The Royal Society of Chemistry},
title = {{Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets}},
doi = {10.1039/9781782626800-00444},
volume = {11},
year = {2017},
}
@inproceedings{605,
abstract = {Position based cryptography (PBC), proposed in the seminal work of Chandran, Goyal, Moriarty, and Ostrovsky (SIAM J. Computing, 2014), aims at constructing cryptographic schemes in which the identity of the user is his geographic position. Chandran et al. construct PBC schemes for secure positioning and position-based key agreement in the bounded-storage model (Maurer, J. Cryptology, 1992). Apart from bounded memory, their security proofs need a strong additional restriction on the power of the adversary: he cannot compute joint functions of his inputs. Removing this assumption is left as an open problem. We show that an answer to this question would resolve a long standing open problem in multiparty communication complexity: finding a function that is hard to compute with low communication complexity in the simultaneous message model, but easy to compute in the fully adaptive model. On a more positive side: we also show some implications in the other direction, i.e.: we prove that lower bounds on the communication complexity of certain multiparty problems imply existence of PBC primitives. Using this result we then show two attractive ways to “bypass” our hardness result: the first uses the random oracle model, the second weakens the locality requirement in the bounded-storage model to online computability. The random oracle construction is arguably one of the simplest proposed so far in this area. Our results indicate that constructing improved provably secure protocols for PBC requires a better understanding of multiparty communication complexity. This is yet another example where negative results in one area (in our case: lower bounds in multiparty communication complexity) can be used to construct secure cryptographic schemes.},
author = {Brody, Joshua and Dziembowski, Stefan and Faust, Sebastian and Pietrzak, Krzysztof Z},
editor = {Kalai, Yael and Reyzin, Leonid},
isbn = {978-331970499-9},
location = {Baltimore, MD, United States},
pages = {56 -- 81},
publisher = {Springer},
title = {{Position based cryptography and multiparty communication complexity}},
doi = {10.1007/978-3-319-70500-2_3},
volume = {10677},
year = {2017},
}
@inproceedings{609,
abstract = {Several cryptographic schemes and applications are based on functions that are both reasonably efficient to compute and moderately hard to invert, including client puzzles for Denial-of-Service protection, password protection via salted hashes, or recent proof-of-work blockchain systems. Despite their wide use, a definition of this concept has not yet been distilled and formalized explicitly. Instead, either the applications are proven directly based on the assumptions underlying the function, or some property of the function is proven, but the security of the application is argued only informally. The goal of this work is to provide a (universal) definition that decouples the efforts of designing new moderately hard functions and of building protocols based on them, serving as an interface between the two. On a technical level, beyond the mentioned definitions, we instantiate the model for four different notions of hardness. We extend the work of Alwen and Serbinenko (STOC 2015) by providing a general tool for proving security for the first notion of memory-hard functions that allows for provably secure applications. The tool allows us to recover all of the graph-theoretic techniques developed for proving security under the older, non-composable, notion of security used by Alwen and Serbinenko. As an application of our definition of moderately hard functions, we prove the security of two different schemes for proofs of effort (PoE). We also formalize and instantiate the concept of a non-interactive proof of effort (niPoE), in which the proof is not bound to a particular communication context but rather any bit-string chosen by the prover.},
author = {Alwen, Joel F and Tackmann, Björn},
editor = {Kalai, Yael and Reyzin, Leonid},
isbn = {978-331970499-9},
location = {Baltimore, MD, United States},
pages = {493 -- 526},
publisher = {Springer},
title = {{Moderately hard functions: Definition, instantiations, and applications}},
doi = {10.1007/978-3-319-70500-2_17},
volume = {10677},
year = {2017},
}
@article{610,
abstract = {The fact that the complete graph K5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph Kn embeds in a closed surface M (other than the Klein bottle) if and only if (n−3)(n−4) ≤ 6b1(M), where b1(M) is the first Z2-Betti number of M. On the other hand, van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of Kn+1) embeds in R2k if and only if n ≤ 2k + 1. Two decades ago, Kühnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k − 1)-connected 2k-manifold with kth Z2-Betti number bk only if the following generalized Heawood inequality holds: (k+1 n−k−1) ≤ (k+1 2k+1)bk. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k-skeleton of the n-simplex embeds in a compact 2k-manifold with kth Z2-Betti number bk, then n ≤ 2bk(k 2k+2)+2k+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k−1)-connected. Our results generalize to maps without q-covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.},
author = {Goaoc, Xavier and Mabillard, Isaac and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli},
journal = {Israel Journal of Mathematics},
number = {2},
pages = {841 -- 866},
publisher = {Springer},
title = {{On generalized Heawood inequalities for manifolds: A van Kampen–Flores type nonembeddability result}},
doi = {10.1007/s11856-017-1607-7},
volume = {222},
year = {2017},
}
@article{611,
abstract = {Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity.},
author = {Bradley, Desmond and Xu, Ping and Mohorianu, Irina and Whibley, Annabel and Field, David and Tavares, Hugo and Couchman, Matthew and Copsey, Lucy and Carpenter, Rosemary and Li, Miaomiao and Li, Qun and Xue, Yongbiao and Dalmay, Tamas and Coen, Enrico},
issn = {00368075},
journal = {Science},
number = {6365},
pages = {925 -- 928},
publisher = {American Association for the Advancement of Science},
title = {{Evolution of flower color pattern through selection on regulatory small RNAs}},
doi = {10.1126/science.aao3526},
volume = {358},
year = {2017},
}
@article{613,
abstract = {Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.},
author = {Chait, Remy P and Ruess, Jakob and Bergmiller, Tobias and Tkacik, Gasper and Guet, Calin C},
issn = {20411723},
journal = {Nature Communications},
number = {1},
publisher = {Nature Publishing Group},
title = {{Shaping bacterial population behavior through computer interfaced control of individual cells}},
doi = {10.1038/s41467-017-01683-1},
volume = {8},
year = {2017},
}
@article{614,
abstract = {Moths and butterflies (Lepidoptera) usually have a pair of differentiated WZ sex chromosomes. However, in most lineages outside of the division Ditrysia, as well as in the sister order Trichoptera, females lack a W chromosome. The W is therefore thought to have been acquired secondarily. Here we compare the genomes of three Lepidoptera species (one Dytrisia and two non-Dytrisia) to test three models accounting for the origin of the W: (1) a Z-autosome fusion; (2) a sex chromosome turnover; and (3) a non-canonical mechanism (e.g., through the recruitment of a B chromosome). We show that the gene content of the Z is highly conserved across Lepidoptera (rejecting a sex chromosome turnover) and that very few genes moved onto the Z in the common ancestor of the Ditrysia (arguing against a Z-autosome fusion). Our comparative genomics analysis therefore supports the secondary acquisition of the Lepidoptera W by a non-canonical mechanism, and it confirms the extreme stability of well-differentiated sex chromosomes.},
author = {Fraisse, Christelle and Picard, Marion A and Vicoso, Beatriz},
issn = {20411723},
journal = {Nature Communications},
number = {1},
publisher = {Nature Publishing Group},
title = {{The deep conservation of the Lepidoptera Z chromosome suggests a non canonical origin of the W}},
doi = {10.1038/s41467-017-01663-5},
volume = {8},
year = {2017},
}
@article{615,
abstract = {We show that the Dyson Brownian Motion exhibits local universality after a very short time assuming that local rigidity and level repulsion of the eigenvalues hold. These conditions are verified, hence bulk spectral universality is proven, for a large class of Wigner-like matrices, including deformed Wigner ensembles and ensembles with non-stochastic variance matrices whose limiting densities differ from Wigner's semicircle law.},
author = {Erdös, László and Schnelli, Kevin},
issn = {02460203},
journal = {Annales de l'institut Henri Poincare (B) Probability and Statistics},
number = {4},
pages = {1606 -- 1656},
publisher = {Institute of Mathematical Statistics},
title = {{Universality for random matrix flows with time dependent density}},
doi = {10.1214/16-AIHP765},
volume = {53},
year = {2017},
}
@article{6196,
abstract = {PMAC is a simple and parallel block-cipher mode of operation, which was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a (pseudo)random permutation over n-bit strings, PMAC constitutes a provably secure variable input-length (pseudo)random function. For adversaries making q queries, each of length at most l (in n-bit blocks), and of total length σ ≤ ql, the original paper proves an upper bound on the distinguishing advantage of Ο(σ2/2n), while the currently best bound is Ο (qσ/2n).In this work we show that this bound is tight by giving an attack with advantage Ω (q2l/2n). In the PMAC construction one initially XORs a mask to every message block, where the mask for the ith block is computed as τi := γi·L, where L is a (secret) random value, and γi is the i-th codeword of the Gray code. Our attack applies more generally to any sequence of γi’s which contains a large coset of a subgroup of GF(2n). We then investigate if the security of PMAC can be further improved by using τi’s that are k-wise independent, for k > 1 (the original distribution is only 1-wise independent). We observe that the security of PMAC will not increase in general, even if the masks are chosen from a 2-wise independent distribution, and then prove that the security increases to O(q<2/2n), if the τi are 4-wise independent. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether 3-wise independence is already sufficient to get this level of security is left as an open problem.},
author = {Gazi, Peter and Pietrzak, Krzysztof Z and Rybar, Michal},
issn = {2519-173X},
journal = {IACR Transactions on Symmetric Cryptology},
number = {2},
pages = {145--161},
publisher = {Ruhr University Bochum},
title = {{The exact security of PMAC}},
doi = {10.13154/TOSC.V2016.I2.145-161},
volume = {2016},
year = {2017},
}
@article{621,
abstract = {The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non-cell-autonomous or community effects in regulating RGP proliferation behavior and lineage progression.},
author = {Beattie, Robert J and Hippenmeyer, Simon},
issn = {00145793},
journal = {FEBS letters},
number = {24},
pages = {3993 -- 4008},
publisher = {Wiley-Blackwell},
title = {{Mechanisms of radial glia progenitor cell lineage progression}},
doi = {10.1002/1873-3468.12906},
volume = {591},
year = {2017},
}
@inbook{623,
abstract = {Genetic factors might be largely responsible for the development of autism spectrum disorder (ASD) that alone or in combination with specific environmental risk factors trigger the pathology. Multiple mutations identified in ASD patients that impair synaptic function in the central nervous system are well studied in animal models. How these mutations might interact with other risk factors is not fully understood though. Additionally, how systems outside of the brain are altered in the context of ASD is an emerging area of research. Extracerebral influences on the physiology could begin in utero and contribute to changes in the brain and in the development of other body systems and further lead to epigenetic changes. Therefore, multiple recent studies have aimed at elucidating the role of gene-environment interactions in ASD. Here we provide an overview on the extracerebral systems that might play an important associative role in ASD and review evidence regarding the potential roles of inflammation, trace metals, metabolism, genetic susceptibility, enteric nervous system function and the microbiota of the gastrointestinal (GI) tract on the development of endophenotypes in animal models of ASD. By influencing environmental conditions, it might be possible to reduce or limit the severity of ASD pathology.},
author = {Hill Yardin, Elisa and Mckeown, Sonja and Novarino, Gaia and Grabrucker, Andreas},
booktitle = {Translational Anatomy and Cell Biology of Autism Spectrum Disorder},
editor = {Schmeisser, Michael and Boekers, Tobias},
isbn = {978-3-319-52496-2},
issn = {03015556},
pages = {159 -- 187},
publisher = {Springer},
title = {{Extracerebral dysfunction in animal models of autism spectrum disorder}},
doi = {10.1007/978-3-319-52498-6_9},
volume = {224},
year = {2017},
}
@article{624,
abstract = {Bacteria adapt to adverse environmental conditions by altering gene expression patterns. Recently, a novel stress adaptation mechanism has been described that allows Escherichia coli to alter gene expression at the post-transcriptional level. The key player in this regulatory pathway is the endoribonuclease MazF, the toxin component of the toxin-antitoxin module mazEF that is triggered by various stressful conditions. In general, MazF degrades the majority of transcripts by cleaving at ACA sites, which results in the retardation of bacterial growth. Furthermore, MazF can process a small subset of mRNAs and render them leaderless by removing their ribosome binding site. MazF concomitantly modifies ribosomes, making them selective for the translation of leaderless mRNAs. In this study, we employed fluorescent reporter-systems to investigate mazEF expression during stressful conditions, and to infer consequences of the mRNA processing mediated by MazF on gene expression at the single-cell level. Our results suggest that mazEF transcription is maintained at low levels in single cells encountering adverse conditions, such as antibiotic stress or amino acid starvation. Moreover, using the grcA mRNA as a model for MazF-mediated mRNA processing, we found that MazF activation promotes heterogeneity in the grcA reporter expression, resulting in a subpopulation of cells with increased levels of GrcA reporter protein.},
author = {Nikolic, Nela and Didara, Zrinka and Moll, Isabella},
issn = {21678359},
journal = {PeerJ},
number = {9},
publisher = {PeerJ},
title = {{MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations}},
doi = {10.7717/peerj.3830},
volume = {2017},
year = {2017},
}
@inbook{625,
abstract = {In the analysis of reactive systems a quantitative objective assigns a real value to every trace of the system. The value decision problem for a quantitative objective requires a trace whose value is at least a given threshold, and the exact value decision problem requires a trace whose value is exactly the threshold. We compare the computational complexity of the value and exact value decision problems for classical quantitative objectives, such as sum, discounted sum, energy, and mean-payoff for two standard models of reactive systems, namely, graphs and graph games.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
booktitle = {Models, Algorithms, Logics and Tools},
editor = {Aceto, Luca and Bacci, Giorgio and Ingólfsdóttir, Anna and Legay, Axel and Mardare, Radu},
issn = {03029743},
pages = {367 -- 381},
publisher = {Springer},
title = {{The cost of exactness in quantitative reachability}},
doi = {10.1007/978-3-319-63121-9_18},
volume = {10460},
year = {2017},
}
@article{626,
abstract = {Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M.},
author = {Barton, Nicholas H and Etheridge, Alison and Véber, Amandine},
issn = {00405809},
journal = {Theoretical Population Biology},
pages = {50 -- 73},
publisher = {Academic Press},
title = {{The infinitesimal model: Definition derivation and implications}},
doi = {10.1016/j.tpb.2017.06.001},
volume = {118},
year = {2017},
}
@article{627,
abstract = {Beige adipocytes are a new type of recruitable brownish adipocytes, with highly mitochondrial membrane uncoupling protein 1 expression and thermogenesis. Beige adipocytes were found among white adipocytes, especially in subcutaneous white adipose tissue (sWAT). Therefore, beige adipocytes may be involved in the regulation of energy metabolism and fat deposition. Transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. It has been reported that TRPM8 activation enhanced the thermogenic function of brown adiposytes. However, the involvement of TRPM8 in the thermogenic function of WAT remains unexplored. Our data revealed that TRPM8 was expressed in mouse white adipocytes at mRNA, protein and functional levels. The mRNA expression of Trpm8 was significantly increased in the differentiated white adipocytes than pre-adipocytes. Moreover, activation of TRPM8 by menthol enhanced the expression of thermogenic genes in cultured white aidpocytes. And menthol-induced increases of the thermogenic genes in white adipocytes was inhibited by either KT5720 (a protein kinase A inhibitor) or BAPTA-AM. In addition, high fat diet (HFD)-induced obesity in mice was significantly recovered by co-treatment with menthol. Dietary menthol enhanced WAT "browning" and improved glucose metabolism in HFD-induced obesity mice as well. Therefore, we concluded that TRPM8 might be involved in WAT "browning" by increasing the expression levels of genes related to thermogenesis and energy metabolism. And dietary menthol could be a novel approach for combating human obesity and related metabolic diseases.},
author = {Jiang, Changyu and Zhai, Ming-Zhu and Yan, Dong and Li, Da and Li, Chen and Zhang, Yonghong and Xiao, Lizu and Xiong, Donglin and Deng, Qiwen and Sun, Wuping},
issn = {19492553},
journal = {Oncotarget},
number = {43},
pages = {75114 -- 75126},
publisher = {Impact Journals LLC},
title = {{Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity}},
doi = {10.18632/oncotarget.20540},
volume = {8},
year = {2017},
}
@inproceedings{628,
abstract = {We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. The motivation is that several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g., Quick-Sort), or completely ineffective (e.g., Coupon-Collector). Since the main focus of expected-runtime analysis is to obtain efficient bounds, we consider bounds that are either logarithmic, linear or almost-linear (O(log n), O(n), O(n · log n), respectively, where n represents the input size). Our main contribution is an efficient (simple linear-time algorithm) sound approach for deriving such expected-runtime bounds for the analysis of recurrence relations induced by randomized algorithms. The experimental results show that our approach can efficiently derive asymptotically optimal expected-runtime bounds for recurrences of classical randomized algorithms, including Randomized-Search, Quick-Sort, Quick-Select, Coupon-Collector, where the worst-case bounds are either inefficient (such as linear as compared to logarithmic expected-runtime complexity, or quadratic as compared to linear or almost-linear expected-runtime complexity), or ineffective.},
author = {Chatterjee, Krishnendu and Fu, Hongfei and Murhekar, Aniket},
editor = {Majumdar, Rupak and Kunčak, Viktor},
isbn = {978-331963386-2},
location = {Heidelberg, Germany},
pages = {118 -- 139},
publisher = {Springer},
title = {{Automated recurrence analysis for almost linear expected runtime bounds}},
doi = {10.1007/978-3-319-63387-9_6},
volume = {10426},
year = {2017},
}
@phdthesis{6287,
abstract = {The main objects considered in the present work are simplicial and CW-complexes with vertices forming a random point cloud. In particular, we consider a Poisson point process in R^n and study Delaunay and Voronoi complexes of the first and higher orders and weighted Delaunay complexes obtained as sections of Delaunay complexes, as well as the Čech complex. Further, we examine theDelaunay complex of a Poisson point process on the sphere S^n, as well as of a uniform point cloud, which is equivalent to the convex hull, providing a connection to the theory of random polytopes. Each of the complexes in question can be endowed with a radius function, which maps its cells to the radii of appropriately chosen circumspheres, called the radius of the cell. Applying and developing discrete Morse theory for these functions, joining it together with probabilistic and sometimes analytic machinery, and developing several integral geometric tools, we aim at getting the distributions of circumradii of typical cells. For all considered complexes, we are able to generalize and obtain up to constants the distribution of radii of typical intervals of all types. In low dimensions the constants can be computed explicitly, thus providing the explicit expressions for the expected numbers of cells. In particular, it allows to find the expected density of simplices of every dimension for a Poisson point process in R^4, whereas the result for R^3 was known already in 1970's.},
author = {Nikitenko, Anton},
pages = {86},
publisher = {IST Austria},
title = {{Discrete Morse theory for random complexes }},
doi = {10.15479/AT:ISTA:th_873},
year = {2017},
}
@inbook{629,
abstract = {Even simple cells like bacteria have precisely regulated cellular anatomies, which allow them to grow, divide and to respond to internal or external cues with high fidelity. How spatial and temporal intracellular organization in prokaryotic cells is achieved and maintained on the basis of locally interacting proteins still remains largely a mystery. Bulk biochemical assays with purified components and in vivo experiments help us to approach key cellular processes from two opposite ends, in terms of minimal and maximal complexity. However, to understand how cellular phenomena emerge, that are more than the sum of their parts, we have to assemble cellular subsystems step by step from the bottom up. Here, we review recent in vitro reconstitution experiments with proteins of the bacterial cell division machinery and illustrate how they help to shed light on fundamental cellular mechanisms that constitute spatiotemporal order and regulate cell division.},
author = {Loose, Martin and Zieske, Katja and Schwille, Petra},
booktitle = {Prokaryotic Cytoskeletons},
pages = {419 -- 444},
publisher = {Springer},
title = {{Reconstitution of protein dynamics involved in bacterial cell division}},
doi = {10.1007/978-3-319-53047-5_15},
volume = {84},
year = {2017},
}
@inproceedings{630,
abstract = {Background: Standards have become available to share semantically encoded vital parameters from medical devices, as required for example by personal healthcare records. Standardised sharing of biosignal data largely remains open. Objectives: The goal of this work is to explore available biosignal file format and data exchange standards and profiles, and to conceptualise end-To-end solutions. Methods: The authors reviewed and discussed available biosignal file format standards with other members of international standards development organisations (SDOs). Results: A raw concept for standards based acquisition, storage, archiving and sharing of biosignals was developed. The GDF format may serve for storing biosignals. Signals can then be shared using FHIR resources and may be stored on FHIR servers or in DICOM archives, with DICOM waveforms as one possible format. Conclusion: Currently a group of international SDOs (e.g. HL7, IHE, DICOM, IEEE) is engaged in intensive discussions. This discussion extends existing work that already was adopted by large implementer communities. The concept presented here only reports the current status of the discussion in Austria. The discussion will continue internationally, with results to be expected over the coming years.},
author = {Sauermann, Stefan and David, Veronika and Schlögl, Alois and Egelkraut, Reinhard and Frohner, Matthias and Pohn, Birgit and Urbauer, Philipp and Mense, Alexander},
isbn = {978-161499758-0},
location = {Vienna, Austria},
pages = {356 -- 362},
publisher = {IOS Press},
title = {{Biosignals standards and FHIR: The way to go}},
doi = {10.3233/978-1-61499-759-7-356},
volume = {236},
year = {2017},
}
@inproceedings{631,
abstract = {Template polyhedra generalize intervals and octagons to polyhedra whose facets are orthogonal to a given set of arbitrary directions. They have been employed in the abstract interpretation of programs and, with particular success, in the reachability analysis of hybrid automata. While previously, the choice of directions has been left to the user or a heuristic, we present a method for the automatic discovery of directions that generalize and eliminate spurious counterexamples. We show that for the class of convex hybrid automata, i.e., hybrid automata with (possibly nonlinear) convex constraints on derivatives, such directions always exist and can be found using convex optimization. We embed our method inside a CEGAR loop, thus enabling the time-unbounded reachability analysis of an important and richer class of hybrid automata than was previously possible. We evaluate our method on several benchmarks, demonstrating also its superior efficiency for the special case of linear hybrid automata.},
author = {Bogomolov, Sergiy and Frehse, Goran and Giacobbe, Mirco and Henzinger, Thomas A},
isbn = {978-366254576-8},
location = {Uppsala, Sweden},
pages = {589 -- 606},
publisher = {Springer},
title = {{Counterexample guided refinement of template polyhedra}},
doi = {10.1007/978-3-662-54577-5_34},
volume = {10205},
year = {2017},
}
@article{632,
abstract = {We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4. },
author = {Lewin, Mathieu and Nam, Phan and Rougerie, Nicolas},
journal = {Proceedings of the American Mathematical Society},
number = {6},
pages = {2441 -- 2454},
publisher = {American Mathematical Society},
title = {{A note on 2D focusing many boson systems}},
doi = {10.1090/proc/13468},
volume = {145},
year = {2017},
}
@inproceedings{633,
abstract = {A Rapidly-exploring Random Tree (RRT) is an algorithm which can search a non-convex region of space by incrementally building a space-filling tree. The tree is constructed from random points drawn from system’s state space and is biased to grow towards large unexplored areas in the system. RRT can provide better coverage of a system’s possible behaviors compared with random simulations, but is more lightweight than full reachability analysis. In this paper, we explore some of the design decisions encountered while implementing a hybrid extension of the RRT algorithm, which have not been elaborated on before. In particular, we focus on handling non-determinism, which arises due to discrete transitions. We introduce the notion of important points to account for this phenomena. We showcase our ideas using heater and navigation benchmarks.},
author = {Bak, Stanley and Bogomolov, Sergiy and Henzinger, Thomas A and Kumar, Aviral},
editor = {Abate, Alessandro and Bodo, Sylvie},
isbn = {978-331963500-2},
location = {Heidelberg, Germany},
pages = {83 -- 89},
publisher = {Springer},
title = {{Challenges and tool implementation of hybrid rapidly exploring random trees}},
doi = {10.1007/978-3-319-63501-9_6},
volume = {10381},
year = {2017},
}
@inbook{634,
abstract = {As autism spectrum disorder (ASD) is largely regarded as a neurodevelopmental condition, long-time consensus was that its hallmark features are irreversible. However, several studies from recent years using defined mouse models of ASD have provided clear evidence that in mice neurobiological and behavioural alterations can be ameliorated or even reversed by genetic restoration or pharmacological treatment either before or after symptom onset. Here, we review findings on genetic and pharmacological reversibility of phenotypes in mouse models of ASD. Our review should give a comprehensive overview on both aspects and encourage future studies to better understand the underlying molecular mechanisms that might be translatable from animals to humans.},
author = {Schroeder, Jan and Deliu, Elena and Novarino, Gaia and Schmeisser, Michael},
booktitle = {Translational Anatomy and Cell Biology of Autism Spectrum Disorder},
editor = {Schmeisser, Michael and Boekers, Tobias},
pages = {189 -- 211},
publisher = {Springer},
title = {{Genetic and pharmacological reversibility of phenotypes in mouse models of autism spectrum disorder}},
doi = {10.1007/978-3-319-52498-6_10},
volume = {224},
year = {2017},
}
@inproceedings{635,
abstract = {Memory-hard functions (MHFs) are hash algorithms whose evaluation cost is dominated by memory cost. As memory, unlike computation, costs about the same across different platforms, MHFs cannot be evaluated at significantly lower cost on dedicated hardware like ASICs. MHFs have found widespread applications including password hashing, key derivation, and proofs-of-work. This paper focuses on scrypt, a simple candidate MHF designed by Percival, and described in RFC 7914. It has been used within a number of cryptocurrencies (e.g., Litecoin and Dogecoin) and has been an inspiration for Argon2d, one of the winners of the recent password-hashing competition. Despite its popularity, no rigorous lower bounds on its memory complexity are known. We prove that scrypt is optimally memory-hard, i.e., its cumulative memory complexity (cmc) in the parallel random oracle model is Ω(n2w), where w and n are the output length and number of invocations of the underlying hash function, respectively. High cmc is a strong security target for MHFs introduced by Alwen and Serbinenko (STOC’15) which implies high memory cost even for adversaries who can amortize the cost over many evaluations and evaluate the underlying hash functions many times in parallel. Our proof is the first showing optimal memory-hardness for any MHF. Our result improves both quantitatively and qualitatively upon the recent work by Alwen et al. (EUROCRYPT’16) who proved a weaker lower bound of Ω(n2w/ log2 n) for a restricted class of adversaries.},
author = {Alwen, Joel F and Chen, Binchi and Pietrzak, Krzysztof Z and Reyzin, Leonid and Tessaro, Stefano},
editor = {Coron, Jean-Sébastien and Buus Nielsen, Jesper},
isbn = {978-331956616-0},
location = {Paris, France},
pages = {33 -- 62},
publisher = {Springer},
title = {{Scrypt is maximally memory hard}},
doi = {10.1007/978-3-319-56617-7_2},
volume = {10212},
year = {2017},
}
@inproceedings{636,
abstract = {Signal regular expressions can specify sequential properties of real-valued signals based on threshold conditions, regular operations, and duration constraints. In this paper we endow them with a quantitative semantics which indicates how robustly a signal matches or does not match a given expression. First, we show that this semantics is a safe approximation of a distance between the signal and the language defined by the expression. Then, we consider the robust matching problem, that is, computing the quantitative semantics of every segment of a given signal relative to an expression. We present an algorithm that solves this problem for piecewise-constant and piecewise-linear signals and show that for such signals the robustness map is a piecewise-linear function. The availability of an indicator describing how robustly a signal segment matches some regular pattern provides a general framework for quantitative monitoring of cyber-physical systems.},
author = {Bakhirkin, Alexey and Ferrere, Thomas and Maler, Oded and Ulus, Dogan},
editor = {Abate, Alessandro and Geeraerts, Gilles},
isbn = {978-331965764-6},
location = {Berlin, Germany},
pages = {189 -- 206},
publisher = {Springer},
title = {{On the quantitative semantics of regular expressions over real-valued signals}},
doi = {10.1007/978-3-319-65765-3_11},
volume = {10419},
year = {2017},
}
@inproceedings{637,
abstract = {For many cryptographic primitives, it is relatively easy to achieve selective security (where the adversary commits a-priori to some of the choices to be made later in the attack) but appears difficult to achieve the more natural notion of adaptive security (where the adversary can make all choices on the go as the attack progresses). A series of several recent works shows how to cleverly achieve adaptive security in several such scenarios including generalized selective decryption (Panjwani, TCC ’07 and Fuchsbauer et al., CRYPTO ’15), constrained PRFs (Fuchsbauer et al., ASIACRYPT ’14), and Yao garbled circuits (Jafargholi and Wichs, TCC ’16b). Although the above works expressed vague intuition that they share a common technique, the connection was never made precise. In this work we present a new framework that connects all of these works and allows us to present them in a unified and simplified fashion. Moreover, we use the framework to derive a new result for adaptively secure secret sharing over access structures defined via monotone circuits. We envision that further applications will follow in the future. Underlying our framework is the following simple idea. It is well known that selective security, where the adversary commits to n-bits of information about his future choices, automatically implies adaptive security at the cost of amplifying the adversary’s advantage by a factor of up to 2n. However, in some cases the proof of selective security proceeds via a sequence of hybrids, where each pair of adjacent hybrids locally only requires some smaller partial information consisting of m ≪ n bits. The partial information needed might be completely different between different pairs of hybrids, and if we look across all the hybrids we might rely on the entire n-bit commitment. Nevertheless, the above is sufficient to prove adaptive security, at the cost of amplifying the adversary’s advantage by a factor of only 2m ≪ 2n. In all of our examples using the above framework, the different hybrids are captured by some sort of a graph pebbling game and the amount of information that the adversary needs to commit to in each pair of hybrids is bounded by the maximum number of pebbles in play at any point in time. Therefore, coming up with better strategies for proving adaptive security translates to various pebbling strategies for different types of graphs.},
author = {Jafargholi, Zahra and Kamath Hosdurg, Chethan and Klein, Karen and Komargodski, Ilan and Pietrzak, Krzysztof Z and Wichs, Daniel},
editor = {Katz, Jonathan and Shacham, Hovav},
isbn = {978-331963687-0},
location = {Santa Barbara, CA, United States},
pages = {133 -- 163},
publisher = {Springer},
title = {{Be adaptive avoid overcommitting}},
doi = {10.1007/978-3-319-63688-7_5},
volume = {10401},
year = {2017},
}
@proceedings{638,
editor = {Bogomolov, Sergiy and Martel, Matthieu and Prabhakar, Pavithra},
publisher = {Springer},
title = {{Numerical Software Verification}},
doi = {10.1007/978-3-319-54292-8},
volume = {10152},
year = {2017},
}
@inproceedings{640,
abstract = {Data-independent Memory Hard Functions (iMHFS) are finding a growing number of applications in security; especially in the domain of password hashing. An important property of a concrete iMHF is specified by fixing a directed acyclic graph (DAG) Gn on n nodes. The quality of that iMHF is then captured by the following two pebbling complexities of Gn: – The parallel cumulative pebbling complexity Π∥cc(Gn) must be as high as possible (to ensure that the amortized cost of computing the function on dedicated hardware is dominated by the cost of memory). – The sequential space-time pebbling complexity Πst(Gn) should be as close as possible to Π∥cc(Gn) (to ensure that using many cores in parallel and amortizing over many instances does not give much of an advantage). In this paper we construct a family of DAGs with best possible parameters in an asymptotic sense, i.e., where Π∥cc(Gn) = Ω(n2/ log(n)) (which matches a known upper bound) and Πst(Gn) is within a constant factor of Π∥cc(Gn). Our analysis relies on a new connection between the pebbling complexity of a DAG and its depth-robustness (DR) – a well studied combinatorial property. We show that high DR is sufficient for high Π∥cc. Alwen and Blocki (CRYPTO’16) showed that high DR is necessary and so, together, these results fully characterize DAGs with high Π∥cc in terms of DR. Complementing these results, we provide new upper and lower bounds on the Π∥cc of several important candidate iMHFs from the literature. We give the first lower bounds on the memory hardness of the Catena and Balloon Hashing functions in a parallel model of computation and we give the first lower bounds of any kind for (a version) of Argon2i. Finally we describe a new class of pebbling attacks improving on those of Alwen and Blocki (CRYPTO’16). By instantiating these attacks we upperbound the Π∥cc of the Password Hashing Competition winner Argon2i and one of the Balloon Hashing functions by O (n1.71). We also show an upper bound of O(n1.625) for the Catena functions and the two remaining Balloon Hashing functions.},
author = {Alwen, Joel F and Blocki, Jeremiah and Pietrzak, Krzysztof Z},
editor = {Coron, Jean-Sébastien and Buus Nielsen, Jesper},
isbn = {978-331956616-0},
location = {Paris, France},
pages = {3 -- 32},
publisher = {Springer},
title = {{Depth-robust graphs and their cumulative memory complexity}},
doi = {10.1007/978-3-319-56617-7_1},
volume = {10212},
year = {2017},
}
@inproceedings{641,
abstract = {We introduce two novel methods for learning parameters of graphical models for image labelling. The following two tasks underline both methods: (i) perturb model parameters based on given features and ground truth labelings, so as to exactly reproduce these labelings as optima of the local polytope relaxation of the labelling problem; (ii) train a predictor for the perturbed model parameters so that improved model parameters can be applied to the labelling of novel data. Our first method implements task (i) by inverse linear programming and task (ii) using a regressor e.g. a Gaussian process. Our second approach simultaneously solves tasks (i) and (ii) in a joint manner, while being restricted to linearly parameterised predictors. Experiments demonstrate the merits of both approaches.},
author = {Trajkovska, Vera and Swoboda, Paul and Åström, Freddie and Petra, Stefanie},
editor = {Lauze, François and Dong, Yiqiu and Bjorholm Dahl, Anders},
isbn = {978-331958770-7},
location = {Kolding, Denmark},
pages = {323 -- 334},
publisher = {Springer},
title = {{Graphical model parameter learning by inverse linear programming}},
doi = {10.1007/978-3-319-58771-4_26},
volume = {10302},
year = {2017},
}