@inproceedings{3853,
abstract = {Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Edelsbrunner, Herbert and Henzinger, Thomas A and Rannou, Philippe},
location = {Paris, France},
pages = {269 -- 283},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Mean-payoff automaton expressions}},
doi = {10.1007/978-3-642-15375-4_19},
volume = {6269},
year = {2010},
}
@inproceedings{3854,
abstract = {Graph games of infinite length provide a natural model for open reactive systems: one player (Eve) represents the controller and the other player (Adam) represents the environment. The evolution of the system depends on the decisions of both players. The specification for the system is usually given as an ω-regular language L over paths and Eve’s goal is to ensure that the play belongs to L irrespective of Adam’s behaviour. The classical notion of winning strategies fails to capture several interesting scenarios. For example, strong fairness (Streett) conditions are specified by a number of request-grant pairs and require every pair that is requested infinitely often to be granted infinitely often: Eve might win just by preventing Adam from making any new request, but a “better” strategy would allow Adam to make as many requests as possible and still ensure fairness. To address such questions, we introduce the notion of obliging games, where Eve has to ensure a strong condition Φ, while always allowing Adam to satisfy a weak condition Ψ. We present a linear time reduction of obliging games with two Muller conditions Φ and Ψ to classical Muller games. We consider obliging Streett games and show they are co-NP complete, and show a natural quantitative optimisation problem for obliging Streett games is in FNP. We also show how obliging games can provide new and interesting semantics for multi-player games.},
author = {Chatterjee, Krishnendu and Horn, Florian and Löding, Christof},
location = {Paris, France},
pages = {284 -- 296},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Obliging games}},
doi = {10.1007/978-3-642-15375-4_20},
volume = {6269},
year = {2010},
}
@inproceedings{3855,
abstract = {We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with parity objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider qualitative analysis problems: given a POMDP with a parity objective, decide whether there exists an observation-based strategy to achieve the objective with probability 1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis problem for POMDPs with parity objectives and its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish several upper and lower bounds that were not known in the literature. Second, we give optimal bounds (matching upper and lower bounds) for the memory required by pure and randomized observation-based strategies for each class of objectives.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {258 -- 269},
publisher = {Springer},
title = {{Qualitative analysis of partially-observable Markov Decision Processes}},
doi = {10.1007/978-3-642-15155-2_24},
volume = {6281},
year = {2010},
}
@inproceedings{3856,
abstract = {We consider two-player zero-sum games on graphs. These games can be classified on the basis of the information of the players and on the mode of interaction between them. On the basis of information the classification is as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided complete-observation (one player has complete observation); and (c) complete-observation (both players have complete view of the game). On the basis of mode of interaction we have the following classification: (a) concurrent (players interact simultaneously); and (b) turn-based (players interact in turn). The two sources of randomness in these games are randomness in transition function and randomness in strategies. In general, randomized strategies are more powerful than deterministic strategies, and randomness in transitions gives more general classes of games. We present a complete characterization for the classes of games where randomness is not helpful in: (a) the transition function (probabilistic transition can be simulated by deterministic transition); and (b) strategies (pure strategies are as powerful as randomized strategies). As consequence of our characterization we obtain new undecidability results for these games. },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Gimbert, Hugo and Henzinger, Thomas A},
location = {Brno, Czech Republic},
pages = {246 -- 257},
publisher = {Springer},
title = {{Randomness for free}},
doi = {10.1007/978-3-642-15155-2_23},
volume = {6281},
year = {2010},
}
@inproceedings{3857,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present an almost complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A},
location = {Singapore, Singapore},
pages = {1 -- 16},
publisher = {Springer},
title = {{Probabilistic Automata on infinite words: decidability and undecidability results}},
doi = {10.1007/978-3-642-15643-4_1},
volume = {6252},
year = {2010},
}
@inproceedings{3858,
abstract = {We consider two-player zero-sum games on graphs. On the basis of the information available to the players these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have com- plete view of the game). We survey the complexity results for the problem of de- ciding the winner in various classes of partial-observation games with ω-regular winning conditions specified as parity objectives. We present a reduction from the class of parity objectives that depend on sequence of states of the game to the sub-class of parity objectives that only depend on the sequence of observations. We also establish that partial-observation acyclic games are PSPACE-complete.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Yogyakarta, Indonesia},
pages = {1 -- 14},
publisher = {Springer},
title = {{The complexity of partial-observation parity games}},
doi = {10.1007/978-3-642-16242-8_1},
volume = {6397},
year = {2010},
}
@proceedings{3859,
abstract = {This book constitutes the proceedings of the 8th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2010, held in Klosterneuburg, Austria in September 2010. The 14 papers presented were carefully reviewed and selected from 31 submissions. In addition, the volume contains 3 invited talks and 2 invited tutorials.The aim of FORMATS is to promote the study of fundamental and practical aspects of timed systems, and to bring together researchers from different disciplines that share an interest in the modeling and analysis of timed systems. Typical topics include foundations and semantics, methods and tools, and applications.},
editor = {Chatterjee, Krishnendu and Henzinger, Thomas A},
location = {Klosterneuburg, Austria},
publisher = {Springer},
title = {{Formal modeling and analysis of timed systems}},
doi = {10.1007/978-3-642-15297-9},
volume = {6246},
year = {2010},
}
@inproceedings{3860,
abstract = {In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Generalized mean-payoff and energy games replace individual weights by tuples, and the limit average (resp. running sum) of each coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis of resource-bounded processes with multiple resources. We prove the finite-memory determinacy of generalized energy games and show the inter- reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also improve the computational complexity for solving both classes of games with finite-memory strategies: while the previously best known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the protagonist is NP-complete.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A and Raskin, Jean},
location = {Chennai, India},
pages = {505 -- 516},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Generalized mean-payoff and energy games}},
doi = {10.4230/LIPIcs.FSTTCS.2010.505},
volume = {8},
year = {2010},
}
@article{3861,
abstract = {We introduce strategy logic, a logic that treats strategies in two-player games as explicit first-order objects. The explicit treatment of strategies allows us to specify properties of nonzero-sum games in a simple and natural way. We show that the one-alternation fragment of strategy logic is strong enough to express the existence of Nash equilibria and secure equilibria, and subsumes other logics that were introduced to reason about games, such as ATL, ATL*, and game logic. We show that strategy logic is decidable, by constructing tree automata that recognize sets of strategies. While for the general logic, our decision procedure is nonelementary, for the simple fragment that is used above we show that the complexity is polynomial in the size of the game graph and optimal in the size of the formula (ranging from polynomial to 2EXPTIME depending on the form of the formula).},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Piterman, Nir},
journal = {Information and Computation},
number = {6},
pages = {677 -- 693},
publisher = {Elsevier},
title = {{Strategy logic}},
doi = {10.1016/j.ic.2009.07.004},
volume = {208},
year = {2010},
}
@article{3863,
abstract = {We consider two-player parity games with imperfect information in which strategies rely on observations that provide imperfect information about the history of a play. To solve such games, i.e., to determine the winning regions of players and corresponding winning strategies, one can use the subset construction to build an equivalent perfect-information game. Recently, an algorithm that avoids the inefficient subset construction has been proposed. The algorithm performs a fixed-point computation in a lattice of antichains, thus maintaining a succinct representation of state sets. However, this representation does not allow to recover winning strategies. In this paper, we build on the antichain approach to develop an algorithm for constructing the winning strategies in parity games of imperfect information. One major obstacle in adapting the classical procedure is that the complementation of attractor sets would break the invariant of downward-closedness on which the antichain representation relies. We overcome this difficulty by decomposing problem instances recursively into games with a combination of reachability, safety, and simpler parity conditions. We also report on an experimental implementation of our algorithm: to our knowledge, this is the first implementation of a procedure for solving imperfect-information parity games on graphs.},
author = {Berwanger, Dietmar and Chatterjee, Krishnendu and De Wulf, Martin and Doyen, Laurent and Henzinger, Thomas A},
journal = {Information and Computation},
number = {10},
pages = {1206 -- 1220},
publisher = {Elsevier},
title = {{Strategy construction for parity games with imperfect information}},
doi = {10.1016/j.ic.2009.09.006},
volume = {208},
year = {2010},
}