@misc{5575, abstract = {Comparison of Scopus' and FWF's data on Austrian publication output at RSC. }, author = {Villányi, Márton}, keywords = {Publication analysis, Bibliography, Open Access}, publisher = {Institute of Science and Technology Austria}, title = {{Data Check RSC Scopus vs. FWF}}, doi = {10.15479/AT:ISTA:87}, year = {2018}, } @article{292, abstract = {Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains.}, author = {Botella Soler, Vicent and Deny, Stephane and Martius, Georg S and Marre, Olivier and Tkacik, Gasper}, journal = {PLoS Computational Biology}, number = {5}, publisher = {Public Library of Science}, title = {{Nonlinear decoding of a complex movie from the mammalian retina}}, doi = {10.1371/journal.pcbi.1006057}, volume = {14}, year = {2018}, } @article{438, abstract = {The MazF toxin sequence-specifically cleaves single-stranded RNA upon various stressful conditions, and it is activated as a part of the mazEF toxin–antitoxin module in Escherichia coli. Although autoregulation of mazEF expression through the MazE antitoxin-dependent transcriptional repression has been biochemically characterized, less is known about post-transcriptional autoregulation, as well as how both of these autoregulatory features affect growth of single cells during conditions that promote MazF production. Here, we demonstrate post-transcriptional autoregulation of mazF expression dynamics by MazF cleaving its own transcript. Single-cell analyses of bacterial populations during ectopic MazF production indicated that two-level autoregulation of mazEF expression influences cell-to-cell growth rate heterogeneity. The increase in growth rate heterogeneity is governed by the MazE antitoxin, and tuned by the MazF-dependent mazF mRNA cleavage. Also, both autoregulatory features grant rapid exit from the stress caused by mazF overexpression. Time-lapse microscopy revealed that MazF-mediated cleavage of mazF mRNA leads to increased temporal variability in length of individual cells during ectopic mazF overexpression, as explained by a stochastic model indicating that mazEF mRNA cleavage underlies temporal fluctuations in MazF levels during stress.}, author = {Nikolic, Nela and Bergmiller, Tobias and Vandervelde, Alexandra and Albanese, Tanino and Gelens, Lendert and Moll, Isabella}, journal = {Nucleic Acids Research}, number = {6}, pages = {2918--2931}, publisher = {Oxford University Press}, title = {{Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations}}, doi = {10.1093/nar/gky079}, volume = {46}, year = {2018}, } @article{131, abstract = {XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno’s classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes. }, author = {Picard, Marion A and Cosseau, Celine and Ferré, Sabrina and Quack, Thomas and Grevelding, Christoph and Couté, Yohann and Vicoso, Beatriz}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolution of gene dosage on the Z-chromosome of schistosome parasites}}, doi = {10.7554/eLife.35684}, volume = {7}, year = {2018}, } @misc{5584, abstract = {This package contains data for the publication "Nonlinear decoding of a complex movie from the mammalian retina" by Deny S. et al, PLOS Comput Biol (2018). The data consists of (i) 91 spike sorted, isolated rat retinal ganglion cells that pass stability and quality criteria, recorded on the multi-electrode array, in response to the presentation of the complex movie with many randomly moving dark discs. The responses are represented as 648000 x 91 binary matrix, where the first index indicates the timebin of duration 12.5 ms, and the second index the neural identity. The matrix entry is 0/1 if the neuron didn't/did spike in the particular time bin. (ii) README file and a graphical illustration of the structure of the experiment, specifying how the 648000 timebins are split into epochs where 1, 2, 4, or 10 discs were displayed, and which stimulus segments are exact repeats or unique ball trajectories. (iii) a 648000 x 400 matrix of luminance traces for each of the 20 x 20 positions ("sites") in the movie frame, with time that is locked to the recorded raster. The luminance traces are produced as described in the manuscript by filtering the raw disc movie with a small gaussian spatial kernel. }, author = {Deny, Stephane and Marre, Olivier and Botella-Soler, Vicente and Martius, Georg S and Tkacik, Gasper}, keywords = {retina, decoding, regression, neural networks, complex stimulus}, publisher = {Institute of Science and Technology Austria}, title = {{Nonlinear decoding of a complex movie from the mammalian retina}}, doi = {10.15479/AT:ISTA:98}, year = {2018}, } @article{286, abstract = {Pedigree and sibship reconstruction are important methods in quantifying relationships and fitness of individuals in natural populations. Current methods employ a Markov chain-based algorithm to explore plausible possible pedigrees iteratively. This provides accurate results, but is time-consuming. Here, we develop a method to infer sibship and paternity relationships from half-sibling arrays of known maternity using hierarchical clustering. Given 50 or more unlinked SNP markers and empirically derived error rates, the method performs as well as the widely used package Colony, but is faster by two orders of magnitude. Using simulations, we show that the method performs well across contrasting mating scenarios, even when samples are large. We then apply the method to open-pollinated arrays of the snapdragon Antirrhinum majus and find evidence for a high degree of multiple mating. Although we focus on diploid SNP data, the method does not depend on marker type and as such has broad applications in nonmodel systems. }, author = {Ellis, Thomas and Field, David and Barton, Nicholas H}, journal = {Molecular Ecology Resources}, number = {5}, pages = {988 -- 999}, publisher = {Wiley}, title = {{Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering}}, doi = {10.1111/1755-0998.12782}, volume = {18}, year = {2018}, } @misc{5586, abstract = {Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018).}, author = {Vicoso, Beatriz}, keywords = {schistosoma, Z-chromosome, gene expression}, publisher = {Institute of Science and Technology Austria}, title = {{Input files and scripts from "Evolution of gene dosage on the Z-chromosome of schistosome parasites" by Picard M.A.L., et al (2018)}}, doi = {10.15479/AT:ISTA:109}, year = {2018}, } @misc{5583, abstract = {Data and scripts are provided in support of the manuscript "Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering", and the associated Python package FAPS, available from www.github.com/ellisztamas/faps. Simulation scripts cover: 1. Performance under different mating scenarios. 2. Comparison with Colony2. 3. Effect of changing the number of Monte Carlo draws The final script covers the analysis of half-sib arrays from wild-pollinated seed in an Antirrhinum majus hybrid zone.}, author = {Ellis, Thomas}, publisher = {Institute of Science and Technology Austria}, title = {{Data and Python scripts supporting Python package FAPS}}, doi = {10.15479/AT:ISTA:95}, year = {2018}, } @misc{5569, abstract = {Nela Nikolic, Tobias Bergmiller, Alexandra Vandervelde, Tanino G. Albanese, Lendert Gelens, and Isabella Moll (2018) “Autoregulation of mazEF expression underlies growth heterogeneity in bacterial populations” Nucleic Acids Research, doi: 10.15479/AT:ISTA:74; microscopy experiments by Tobias Bergmiller; image and data analysis by Nela Nikolic.}, author = {Bergmiller, Tobias and Nikolic, Nela}, keywords = {microscopy, microfluidics}, publisher = {Institute of Science and Technology Austria}, title = {{Time-lapse microscopy data}}, doi = {10.15479/AT:ISTA:74}, year = {2018}, } @article{161, abstract = {Which properties of metabolic networks can be derived solely from stoichiometry? Predictive results have been obtained by flux balance analysis (FBA), by postulating that cells set metabolic fluxes to maximize growth rate. Here we consider a generalization of FBA to single-cell level using maximum entropy modeling, which we extend and test experimentally. Specifically, we define for Escherichia coli metabolism a flux distribution that yields the experimental growth rate: the model, containing FBA as a limit, provides a better match to measured fluxes and it makes a wide range of predictions: on flux variability, regulation, and correlations; on the relative importance of stoichiometry vs. optimization; on scaling relations for growth rate distributions. We validate the latter here with single-cell data at different sub-inhibitory antibiotic concentrations. The model quantifies growth optimization as emerging from the interplay of competitive dynamics in the population and regulation of metabolism at the level of single cells.}, author = {De Martino, Daniele and Mc, Andersson Anna and Bergmiller, Tobias and Guet, Calin C and Tkacik, Gasper}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{Statistical mechanics for metabolic networks during steady state growth}}, doi = {10.1038/s41467-018-05417-9}, volume = {9}, year = {2018}, }