@inproceedings{3344,
abstract = {Games played on graphs provide the mathematical framework to analyze several important problems in computer science as well as mathematics, such as the synthesis problem of Church, model checking of open reactive systems and many others. On the basis of mode of interaction of the players these games can be classified as follows: (a) turn-based (players make moves in turns); and (b) concurrent (players make moves simultaneously). On the basis of the information available to the players these games can be classified as follows: (a) perfect-information (players have perfect view of the game); and (b) partial-information (players have partial view of the game). In this talk we will consider all these classes of games with reachability objectives, where the goal of one player is to reach a set of target vertices of the graph, and the goal of the opponent player is to prevent the player from reaching the target. We will survey the results for various classes of games, and the results range from linear time decision algorithms to EXPTIME-complete problems to undecidable problems.},
author = {Chatterjee, Krishnendu},
editor = {Delzanno, Giorgo and Potapov, Igor},
location = {Genoa, Italy},
pages = {1 -- 1},
publisher = {Springer},
title = {{Graph games with reachability objectives}},
doi = {10.1007/978-3-642-24288-5_1},
volume = {6945},
year = {2011},
}
@inproceedings{3345,
abstract = {We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode ω-regular specifications, and the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition re- quires that the resource level never drops below 0, and the mean-payoff condi- tion requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean- payoff parity MDPs, the problem is solvable in polynomial time, improving a recent PSPACE bound.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Warsaw, Poland},
pages = {206 -- 218},
publisher = {Springer},
title = {{Energy and mean-payoff parity Markov Decision Processes}},
doi = {10.1007/978-3-642-22993-0_21},
volume = {6907},
year = {2011},
}
@inproceedings{3346,
abstract = {We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k reward functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the single-objective case, both randomization and memory are necessary for strategies, and that finite-memory randomized strategies are sufficient. Under the satisfaction objective, in contrast to the single-objective case, infinite memory is necessary for strategies, and that randomized memoryless strategies are sufficient for epsilon-approximation, for all epsilon>;0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of reward functions, for all epsilon>;0. Our results also reveal flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, correct the flaws and obtain improved results.},
author = {Brázdil, Tomáš and Brožek, Václav and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
location = {Toronto, Canada},
publisher = {IEEE},
title = {{Two views on multiple mean payoff objectives in Markov Decision Processes}},
doi = {10.1109/LICS.2011.10},
year = {2011},
}
@inproceedings{3347,
abstract = {The class of omega-regular languages provides a robust specification language in verification. Every omega-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens "eventually". Finitary liveness was proposed by Alur and Henzinger as a stronger formulation of liveness. It requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider automata with finitary acceptance conditions defined by finitary Buchi, parity and Streett languages. We study languages expressible by such automata: we give their topological complexity and present a regular-expression characterization. We compare the expressive power of finitary automata and give optimal algorithms for classical decisions questions. We show that the finitary languages are Sigma 2-complete; we present a complete picture of the expressive power of various classes of automata with finitary and infinitary acceptance conditions; we show that the languages defined by finitary parity automata exactly characterize the star-free fragment of omega B-regular languages; and we show that emptiness is NLOGSPACE-complete and universality as well as language inclusion are PSPACE-complete for finitary parity and Streett automata.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
location = {Tarragona, Spain},
pages = {216 -- 226},
publisher = {Springer},
title = {{Finitary languages}},
doi = {10.1007/978-3-642-21254-3_16},
volume = {6638},
year = {2011},
}
@inproceedings{3348,
abstract = {We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two-player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a linear (in the number of clocks) number of memory bits. Precisely, we show that for safety objectives, a memory of size (3 · |C|+lg(|C|+1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential bound. We also settle the open question of whether winning region controller strategies require memory for safety objectives by showing with an example the necessity of memory for region strategies to win for safety objectives.},
author = {Chatterjee, Krishnendu and Prabhu, Vinayak},
location = {Chicago, USA},
pages = {221 -- 230},
publisher = {Springer},
title = {{Synthesis of memory efficient real time controllers for safety objectives}},
doi = {10.1145/1967701.1967734},
year = {2011},
}
@inproceedings{3349,
abstract = {Games on graphs provide a natural model for reactive non-terminating systems. In such games, the interaction of two players on an arena results in an infinite path that describes a run of the system. Different settings are used to model various open systems in computer science, as for instance turn-based or concurrent moves, and deterministic or stochastic transitions. In this paper, we are interested in turn-based games, and specifically in deterministic parity games and stochastic reachability games (also known as simple stochastic games). We present a simple, direct and efficient reduction from deterministic parity games to simple stochastic games: it yields an arena whose size is linear up to a logarithmic factor in size of the original arena.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
location = {Minori, Italy},
pages = {74 -- 86},
publisher = {EPTCS},
title = {{A reduction from parity games to simple stochastic games}},
doi = {10.4204/EPTCS.54.6},
volume = {54},
year = {2011},
}
@inproceedings{3350,
abstract = {A controller for a discrete game with ω-regular objectives requires attention if, intuitively, it requires measuring the state and switching from the current control action. Minimum attention controllers are preferable in modern shared implementations of cyber-physical systems because they produce the least burden on system resources such as processor time or communication bandwidth. We give algorithms to compute minimum attention controllers for ω-regular objectives in imperfect information discrete two-player games. We show a polynomial-time reduction from minimum attention controller synthesis to synthesis of controllers for mean-payoff parity objectives in games of incomplete information. This gives an optimal EXPTIME-complete synthesis algorithm. We show that the minimum attention controller problem is decidable for infinite state systems with finite bisimulation quotients. In particular, the problem is decidable for timed and rectangular automata.},
author = {Chatterjee, Krishnendu and Majumdar, Ritankar},
editor = {Fahrenberg, Uli and Tripakis, Stavros},
location = {Aalborg, Denmark},
pages = {145 -- 159},
publisher = {Springer},
title = {{Minimum attention controller synthesis for omega regular objectives}},
doi = {10.1007/978-3-642-24310-3_11},
volume = {6919},
year = {2011},
}
@inproceedings{3351,
abstract = {In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist. In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Singh, Rohit},
editor = {Owe, Olaf and Steffen, Martin and Telle, Jan Arne},
location = {Oslo, Norway},
pages = {148 -- 159},
publisher = {Springer},
title = {{On memoryless quantitative objectives}},
doi = {10.1007/978-3-642-22953-4_13},
volume = {6914},
year = {2011},
}
@article{3352,
abstract = {Exploring the connection of biology with reactive systems to better understand living systems.},
author = {Fisher, Jasmin and Harel, David and Henzinger, Thomas A},
journal = {Communications of the ACM},
number = {10},
pages = {72 -- 82},
publisher = {ACM},
title = {{Biology as reactivity}},
doi = {10.1145/2001269.2001289},
volume = {54},
year = {2011},
}
@article{3353,
abstract = {Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.},
author = {Tripakis, Stavros and Lickly, Ben and Henzinger, Thomas A and Lee, Edward},
journal = {ACM Transactions on Programming Languages and Systems (TOPLAS)},
number = {4},
publisher = {ACM},
title = {{A theory of synchronous relational interfaces}},
doi = {10.1145/1985342.1985345},
volume = {33},
year = {2011},
}