@inproceedings{2260,
abstract = {Direct Anonymous Attestation (DAA) is one of the most complex cryptographic protocols deployed in practice. It allows an embedded secure processor known as a Trusted Platform Module (TPM) to attest to the configuration of its host computer without violating the owner’s privacy. DAA has been standardized by the Trusted Computing Group and ISO/IEC.
The security of the DAA standard and all existing schemes is analyzed in the random-oracle model. We provide the first constructions of DAA in the standard model, that is, without relying on random oracles. Our constructions use new building blocks, including the first efficient signatures of knowledge in the standard model, which have many applications beyond DAA.
},
author = {Bernhard, David and Fuchsbauer, Georg and Ghadafi, Essam},
location = {Banff, AB, Canada},
pages = {518 -- 533},
publisher = {Springer},
title = {{Efficient signatures of knowledge and DAA in the standard model}},
doi = {10.1007/978-3-642-38980-1_33},
volume = {7954},
year = {2013},
}
@article{2264,
abstract = {Faithful progression through the cell cycle is crucial to the maintenance and developmental potential of stem cells. Here, we demonstrate that neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs) employ a zinc-finger transcription factor specificity protein 2 (Sp2) as a cell cycle regulator in two temporally and spatially distinct progenitor domains. Differential conditional deletion of Sp2 in early embryonic cerebral cortical progenitors, and perinatal olfactory bulb progenitors disrupted transitions through G1, G2 and M phases, whereas DNA synthesis appeared intact. Cell-autonomous function of Sp2 was identified by deletion of Sp2 using mosaic analysis with double markers, which clearly established that conditional Sp2-null NSCs and NPCs are M phase arrested in vivo. Importantly, conditional deletion of Sp2 led to a decline in the generation of NPCs and neurons in the developing and postnatal brains. Our findings implicate Sp2-dependent mechanisms as novel regulators of cell cycle progression, the absence of which disrupts neurogenesis in the embryonic and postnatal brain.},
author = {Liang, Huixuan and Xiao, Guanxi and Yin, Haifeng and Hippenmeyer, Simon and Horowitz, Jonathan and Ghashghaei, Troy},
journal = {Development},
number = {3},
pages = {552 -- 561},
publisher = {Company of Biologists},
title = {{Neural development is dependent on the function of specificity protein 2 in cell cycle progression}},
doi = {10.1242/dev.085621},
volume = {140},
year = {2013},
}
@inproceedings{2270,
abstract = {Representation languages for coalitional games are a key research area in algorithmic game theory. There is an inher-
ent tradeoff between how general a language is, allowing it to capture more elaborate games, and how hard it is computationally to optimize and solve such games. One prominent such language is the simple yet expressive
Weighted Graph Games (WGGs) representation (Deng and Papadimitriou 1994), which maintains knowledge about synergies between agents in the form of an edge weighted graph. We consider the problem of finding the optimal coalition structure in WGGs. The agents in such games are vertices in a graph, and the value of a coalition is the sum of the weights of the edges present between coalition members. The optimal coalition structure is a partition of the agents to coalitions, that maximizes the sum of utilities obtained by the coalitions. We show that finding the optimal coalition structure is not only hard for general graphs, but is also intractable for restricted families such as planar graphs which are amenable for many other combinatorial problems. We then provide algorithms with constant factor approximations for planar, minorfree and bounded degree graphs.},
author = {Bachrach, Yoram and Kohli, Pushmeet and Kolmogorov, Vladimir and Zadimoghaddam, Morteza},
location = {Bellevue, WA, United States},
pages = {81--87},
publisher = {AAAI Press},
title = {{Optimal Coalition Structures in Cooperative Graph Games}},
year = {2013},
}
@inproceedings{2272,
abstract = {We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) x1...xn is the sum of terms over intervals [i,j] where each term is non-zero only if the substring xi...xj equals a prespecified pattern α. Such CRFs can be naturally applied to many sequence tagging problems.
We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively O(nL), O(nLℓmax) and O(nLmin{|D|,log(ℓmax+1)}) where L is the combined length of input patterns, ℓmax is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively O(nL|D|), O(n|Γ|L2ℓ2max) and O(nL|D|), where |Γ| is the number of input patterns.
In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an O(nL) algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case. },
author = {Takhanov, Rustem and Kolmogorov, Vladimir},
booktitle = {ICML'13 Proceedings of the 30th International Conference on International},
location = {Atlanta, GA, USA},
number = {3},
pages = {145 -- 153},
publisher = {International Machine Learning Society},
title = {{Inference algorithms for pattern-based CRFs on sequence data}},
volume = {28},
year = {2013},
}
@techreport{2273,
abstract = {We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.},
author = {Vladimir Kolmogorov},
publisher = {IST Austria},
title = {{Reweighted message passing revisited}},
year = {2013},
}
@techreport{2274,
abstract = {Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto'92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs -- so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model, using graphs with high "pebbling complexity" and Merkle hash-trees. },
author = {Dziembowski, Stefan and Faust, Sebastian and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z},
publisher = {IST Austria},
title = {{Proofs of Space}},
year = {2013},
}
@inproceedings{2276,
abstract = {The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions.},
author = {Gridchyn, Igor and Kolmogorov, Vladimir},
location = {Sydney, Australia},
pages = {2320 -- 2327},
publisher = {IEEE},
title = {{Potts model, parametric maxflow and k-submodular functions}},
doi = {10.1109/ICCV.2013.288},
year = {2013},
}
@article{2277,
abstract = {Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.},
author = {Simmons, Kristina and Prentice, Jason and Tkacik, Gasper and Homann, Jan and Yee, Heather and Palmer, Stephanie and Nelson, Philip and Balasubramanian, Vijay},
journal = {PLoS Computational Biology},
number = {12},
publisher = {Public Library of Science},
title = {{Transformation of stimulus correlations by the retina}},
doi = {10.1371/journal.pcbi.1003344},
volume = {9},
year = {2013},
}
@article{2278,
abstract = {It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l9sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L9sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.},
author = {Pérez Gómez, Raquel and Slovakova, Jana and Rives Quinto, Noemí and Krejčí, Alena and Carmena, Ana},
journal = {Journal of Cell Science},
number = {21},
pages = {4873 -- 4884},
publisher = {Company of Biologists},
title = {{A serrate-notch-canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development}},
doi = {10.1242/jcs.125617},
volume = {126},
year = {2013},
}
@inproceedings{2279,
abstract = {We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Randour, Mickael and Raskin, Jean},
location = {Hanoi, Vietnam},
pages = {118 -- 132},
publisher = {Springer},
title = {{Looking at mean-payoff and total-payoff through windows}},
doi = {10.1007/978-3-319-02444-8_10},
volume = {8172},
year = {2013},
}