@article{524,
abstract = {We consider concurrent games played by two players on a finite-state graph, where in every round the players simultaneously choose a move, and the current state along with the joint moves determine the successor state. We study the most fundamental objective for concurrent games, namely, mean-payoff or limit-average objective, where a reward is associated to each transition, and the goal of player 1 is to maximize the long-run average of the rewards, and the objective of player 2 is strictly the opposite (i.e., the games are zero-sum). The path constraint for player 1 could be qualitative, i.e., the mean-payoff is the maximal reward, or arbitrarily close to it; or quantitative, i.e., a given threshold between the minimal and maximal reward. We consider the computation of the almost-sure (resp. positive) winning sets, where player 1 can ensure that the path constraint is satisfied with probability 1 (resp. positive probability). Almost-sure winning with qualitative constraint exactly corresponds to the question of whether there exists a strategy to ensure that the payoff is the maximal reward of the game. Our main results for qualitative path constraints are as follows: (1) we establish qualitative determinacy results that show that for every state either player 1 has a strategy to ensure almost-sure (resp. positive) winning against all player-2 strategies, or player 2 has a spoiling strategy to falsify almost-sure (resp. positive) winning against all player-1 strategies; (2) we present optimal strategy complexity results that precisely characterize the classes of strategies required for almost-sure and positive winning for both players; and (3) we present quadratic time algorithms to compute the almost-sure and the positive winning sets, matching the best known bound of the algorithms for much simpler problems (such as reachability objectives). For quantitative constraints we show that a polynomial time solution for the almost-sure or the positive winning set would imply a solution to a long-standing open problem (of solving the value problem of turn-based deterministic mean-payoff games) that is not known to be solvable in polynomial time.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
journal = {Information and Computation},
number = {6},
pages = {2 -- 24},
publisher = {Elsevier},
title = {{Qualitative analysis of concurrent mean payoff games}},
doi = {10.1016/j.ic.2015.03.009},
volume = {242},
year = {2015},
}
@article{532,
abstract = {Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a “cleave and shuttle” model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3′ UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3′ UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3′ UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3′ UTR functioning as a “signal transducer” to sense and relay cellular signaling in plants.},
author = {Li, Wenyang and Ma, Mengdi and Feng, Ying and Li, Hongjiang and Wang, Yichuan and Ma, Yutong and Li, Mingzhe and An, Fengying and Guo, Hongwei},
journal = {Cell},
number = {3},
pages = {670 -- 683},
publisher = {Cell Press},
title = {{EIN2-directed translational regulation of ethylene signaling in arabidopsis}},
doi = {10.1016/j.cell.2015.09.037},
volume = {163},
year = {2015},
}
@misc{5429,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics.
Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions.
Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.},
author = {Chatterjee, Krishnendu and Komarkova, Zuzana and Kretinsky, Jan},
issn = {2664-1690},
pages = {41},
publisher = {IST Austria},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.15479/AT:IST-2015-318-v1-1},
year = {2015},
}
@misc{5430,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean- payoff property, the ratio property, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number of nodes of a graph, m the number of edges (for constant treewidth graphs m = O ( n ) ) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a mul- tiplicative factor of ∊ in time O ( n · log( n/∊ )) and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time O ( n · log( | a · b · n | )) = O ( n · log( n · W )) , when the output is a b , as compared to the previously best known algorithm with running time O ( n 2 · log( n · W )) . Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in O ( n 2 · m ) time and the associated decision problem can be solved in O ( n · m ) time, improving the previous known O ( n 3 · m · log( n · W )) and O ( n 2 · m ) bounds, respectively; and (ii) for constant treewidth graphs we present an algorithm that requires O ( n · log n ) time, improving the previous known O ( n 4 · log( n · W )) bound. We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {31},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-319-v1-1},
year = {2015},
}
@misc{5431,
abstract = {We consider finite-state concurrent stochastic games, played by k>=2 players for an infinite number of rounds, where in every round, each player simultaneously and independently of the other players chooses an action, whereafter the successor state is determined by a probability distribution given by the current state and the chosen actions. We consider reachability objectives that given a target set of states require that some state in the target set is visited, and the dual safety objectives that given a target set require that only states in the target set are visited. We are interested in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest non-zero probability employed.
Our main results are as follows: We show that in two-player zero-sum concurrent stochastic games (with reachability objective for one player and the complementary safety objective for the other player): (i) the optimal bound on the patience of optimal and epsilon-optimal strategies, for both players is doubly exponential; and (ii) even in games with a single non-absorbing state exponential (in the number of actions) patience is necessary. In general we study the class of non-zero-sum games admitting epsilon-Nash equilibria. We show that if there is at least one player with reachability objective, then doubly-exponential patience is needed in general for epsilon-Nash equilibrium strategies, whereas in contrast if all players have safety objectives, then the optimal bound on patience for epsilon-Nash equilibrium strategies is only exponential.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Hansen, Kristoffer},
issn = {2664-1690},
pages = {25},
publisher = {IST Austria},
title = {{The patience of concurrent stochastic games with safety and reachability objectives}},
doi = {10.15479/AT:IST-2015-322-v1-1},
year = {2015},
}
@misc{5432,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution.The replacement graph specifies who competes with whom for reproduction.
The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability.
Our main results are:
(1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure).
(2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.
},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{The complexity of evolutionary games on graphs}},
doi = {10.15479/AT:IST-2015-323-v1-1},
year = {2015},
}
@misc{5434,
abstract = {DEC-POMDPs extend POMDPs to a multi-agent setting, where several agents operate in an uncertain environment independently to achieve a joint objective. DEC-POMDPs have been studied with finite-horizon and infinite-horizon discounted-sum objectives, and there exist solvers both for exact and approximate solutions. In this work we consider Goal-DEC-POMDPs, where given a set of target states, the objective is to ensure that the target set is reached with minimal cost. We consider the indefinite-horizon (infinite-horizon with either discounted-sum, or undiscounted-sum, where absorbing goal states have zero-cost) problem. We present a new method to solve the problem that extends methods for finite-horizon DEC- POMDPs and the RTDP-Bel approach for POMDPs. We present experimental results on several examples, and show our approach presents promising results.},
author = {Anonymous, 1 and Anonymous, 2},
issn = {2664-1690},
pages = {16},
publisher = {IST Austria},
title = {{Optimal cost indefinite-horizon reachability in goal DEC-POMDPs}},
year = {2015},
}
@misc{5435,
abstract = {We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives.
There have been two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector.
We consider the problem where the goal is to optimize the expectation under the constraint that the satisfaction semantics is ensured, and thus consider a generalization that unifies the existing semantics. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensures certain probabilistic guarantee).
Our main results are algorithms for the decision problem which are always polynomial in the size of the MDP.
We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Finally, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.},
author = {Chatterjee, Krishnendu and Komarkova, Zuzana and Kretinsky, Jan},
issn = {2664-1690},
pages = {51},
publisher = {IST Austria},
title = {{Unifying two views on multiple mean-payoff objectives in Markov decision processes}},
doi = {10.15479/AT:IST-2015-318-v2-1},
year = {2015},
}
@misc{5436,
abstract = {Recently there has been a significant effort to handle quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, some basic system properties such as average response time cannot be expressed using weighted automata, nor in any other know decidable formalism. In this work, we introduce nested weighted automata as a natural extension of weighted automata which makes it possible to express important quantitative properties such as average response time.
In nested weighted automata, a master automaton spins off and collects results from weighted slave automata, each of which computes a quantity along a finite portion of an infinite word. Nested weighted automata can be viewed as the quantitative analogue of monitor automata, which are used in run-time verification. We establish an almost complete decidability picture for the basic decision problems about nested weighted automata, and illustrate their applicability in several domains. In particular, nested weighted automata can be used to decide average response time properties.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {29},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2015-170-v2-2},
year = {2015},
}
@misc{5437,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property.
The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let $n$ denote the number of nodes of a graph, $m$ the number of edges (for constant treewidth graphs $m=O(n)$) and $W$ the largest absolute value of the weights.
Our main theoretical results are as follows.
First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of $\epsilon$ in time $O(n \cdot \log (n/\epsilon))$ and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time $O(n \cdot \log (|a\cdot b|))=O(n\cdot\log (n\cdot W))$, when the output is $\frac{a}{b}$, as compared to the previously best known algorithm with running time $O(n^2 \cdot \log (n\cdot W))$. Third, for the minimum initial credit problem we show that (i)~for general graphs the problem can be solved in $O(n^2\cdot m)$ time and the associated decision problem can be solved in $O(n\cdot m)$ time, improving the previous known $O(n^3\cdot m\cdot \log (n\cdot W))$ and $O(n^2 \cdot m)$ bounds, respectively; and (ii)~for constant treewidth graphs we present an algorithm that requires $O(n\cdot \log n)$ time, improving the previous known $O(n^4 \cdot \log (n \cdot W))$ bound.
We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks. },
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.15479/AT:IST-2015-330-v2-1},
year = {2015},
}