@article{12106, abstract = {Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells.}, author = {Yeung, Jake and Florescu, Maria and Zeller, Peter and De Barbanson, Buys Anton and Wellenstein, Max D. and Van Oudenaarden, Alexander}, issn = {1546-1696}, journal = {Nature Biotechnology}, pages = {813–823}, publisher = {Springer Nature}, title = {{scChIX-seq infers dynamic relationships between histone modifications in single cells}}, doi = {10.1038/s41587-022-01560-3}, volume = {41}, year = {2023}, } @article{12183, abstract = {We consider a gas of n bosonic particles confined in a box [−ℓ/2,ℓ/2]3 with Neumann boundary conditions. We prove Bose–Einstein condensation in the Gross–Pitaevskii regime, with an optimal bound on the condensate depletion. Moreover, our lower bound for the ground state energy in a small box [−ℓ/2,ℓ/2]3 implies (via Neumann bracketing) a lower bound for the ground state energy of N bosons in a large box [−L/2,L/2]3 with density ρ=N/L3 in the thermodynamic limit.}, author = {Boccato, Chiara and Seiringer, Robert}, issn = {1424-0637}, journal = {Annales Henri Poincare}, pages = {1505--1560}, publisher = {Springer Nature}, title = {{The Bose Gas in a box with Neumann boundary conditions}}, doi = {10.1007/s00023-022-01252-3}, volume = {24}, year = {2023}, } @article{12544, abstract = {Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software.}, author = {Koehl, Patrice and Akopyan, Arseniy and Edelsbrunner, Herbert}, issn = {1549-960X}, journal = {Journal of Chemical Information and Modeling}, number = {3}, pages = {973--985}, publisher = {American Chemical Society}, title = {{Computing the volume, surface area, mean, and Gaussian curvatures of molecules and their derivatives}}, doi = {10.1021/acs.jcim.2c01346}, volume = {63}, year = {2023}, } @article{12543, abstract = {Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts.}, author = {Stock, Miriam and Milutinovic, Barbara and Hönigsberger, Michaela and Grasse, Anna V and Wiesenhofer, Florian and Kampleitner, Niklas and Narasimhan, Madhumitha and Schmitt, Thomas and Cremer, Sylvia}, issn = {2397-334X}, journal = {Nature Ecology and Evolution}, pages = {450--460}, publisher = {Springer Nature}, title = {{Pathogen evasion of social immunity}}, doi = {10.1038/s41559-023-01981-6}, volume = {7}, year = {2023}, } @article{12521, abstract = {Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.}, author = {Mrnjavac, Andrea and Khudiakova, Kseniia and Barton, Nicholas H and Vicoso, Beatriz}, issn = {2056-3744}, journal = {Evolution Letters}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {1}, publisher = {Oxford University Press}, title = {{Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution}}, doi = {10.1093/evlett/qrac004}, volume = {7}, year = {2023}, } @article{12679, abstract = {How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.}, author = {Hippenmeyer, Simon}, issn = {0959-4388}, journal = {Current Opinion in Neurobiology}, keywords = {General Neuroscience}, number = {4}, publisher = {Elsevier}, title = {{Principles of neural stem cell lineage progression: Insights from developing cerebral cortex}}, doi = {10.1016/j.conb.2023.102695}, volume = {79}, year = {2023}, } @article{12429, abstract = {In this paper, we consider traces at initial times for functions with mixed time-space smoothness. Such results are often needed in the theory of evolution equations. Our result extends and unifies many previous results. Our main improvement is that we can allow general interpolation couples. The abstract results are applied to regularity problems for fractional evolution equations and stochastic evolution equations, where uniform trace estimates on the half-line are shown.}, author = {Agresti, Antonio and Lindemulder, Nick and Veraar, Mark}, issn = {1522-2616}, journal = {Mathematische Nachrichten}, number = {4}, pages = {1319--1350}, publisher = {Wiley}, title = {{On the trace embedding and its applications to evolution equations}}, doi = {10.1002/mana.202100192}, volume = {296}, year = {2023}, } @article{12430, abstract = {We study the time evolution of the Nelson model in a mean-field limit in which N nonrelativistic bosons weakly couple (with respect to the particle number) to a positive or zero mass quantized scalar field. Our main result is the derivation of the Bogoliubov dynamics and higher-order corrections. More precisely, we prove the convergence of the approximate wave function to the many-body wave function in norm, with a convergence rate proportional to the number of corrections taken into account in the approximation. We prove an analogous result for the unitary propagator. As an application, we derive a simple system of partial differential equations describing the time evolution of the first- and second-order approximations to the one-particle reduced density matrices of the particles and the quantum field, respectively.}, author = {Falconi, Marco and Leopold, Nikolai K and Mitrouskas, David Johannes and Petrat, Sören P}, issn = {0129-055X}, journal = {Reviews in Mathematical Physics}, number = {4}, publisher = {World Scientific Publishing}, title = {{Bogoliubov dynamics and higher-order corrections for the regularized Nelson model}}, doi = {10.1142/S0129055X2350006X}, volume = {35}, year = {2023}, } @article{12762, abstract = {Neurons in the brain are wired into adaptive networks that exhibit collective dynamics as diverse as scale-specific oscillations and scale-free neuronal avalanches. Although existing models account for oscillations and avalanches separately, they typically do not explain both phenomena, are too complex to analyze analytically or intractable to infer from data rigorously. Here we propose a feedback-driven Ising-like class of neural networks that captures avalanches and oscillations simultaneously and quantitatively. In the simplest yet fully microscopic model version, we can analytically compute the phase diagram and make direct contact with human brain resting-state activity recordings via tractable inference of the model’s two essential parameters. The inferred model quantitatively captures the dynamics over a broad range of scales, from single sensor oscillations to collective behaviors of extreme events and neuronal avalanches. Importantly, the inferred parameters indicate that the co-existence of scale-specific (oscillations) and scale-free (avalanches) dynamics occurs close to a non-equilibrium critical point at the onset of self-sustained oscillations.}, author = {Lombardi, Fabrizio and Pepic, Selver and Shriki, Oren and Tkačik, Gašper and De Martino, Daniele}, issn = {2662-8457}, journal = {Nature Computational Science}, pages = {254--263}, publisher = {Springer Nature}, title = {{Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain}}, doi = {10.1038/s43588-023-00410-9}, volume = {3}, year = {2023}, } @phdthesis{12891, abstract = {The tight spatiotemporal coordination of signaling activity determining embryo patterning and the physical processes driving embryo morphogenesis renders embryonic development robust, such that key developmental processes can unfold relatively normally even outside of the full embryonic context. For instance, embryonic stem cell cultures can recapitulate the hallmarks of gastrulation, i.e. break symmetry leading to germ layer formation and morphogenesis, in a very reduced environment. This leads to questions on specific contributions of embryo-specific features, such as the presence of extraembryonic tissues, which are inherently involved in gastrulation in the full embryonic context. To address this, we established zebrafish embryonic explants without the extraembryonic yolk cell, an important player as a signaling source and for morphogenesis during gastrulation, as a model of ex vivo development. We found that dorsal-marginal determinants are required and sufficient in these explants to form and pattern all three germ layers. However, formation of tissues, which require the highest Nodal-signaling levels, is variable, demonstrating a contribution of extraembryonic tissues for reaching peak Nodal signaling levels. Blastoderm explants also undergo gastrulation-like axis elongation. We found that this elongation movement shows hallmarks of oriented mesendoderm cell intercalations typically associated with dorsal tissues in the intact embryo. These are disrupted by uniform upregulation of BMP signaling activity and concomitant explant ventralization, suggesting that tight spatial control of BMP signaling is a prerequisite for explant morphogenesis. This control is achieved by Nodal signaling, which is critical for effectively downregulating BMP signaling in the mesendoderm, highlighting that Nodal signaling is not only directly required for mesendoderm cell fate specification and morphogenesis, but also by maintaining low levels of BMP signaling at the dorsal side. Collectively, we provide insights into the capacity and organization of signaling and morphogenetic domains to recapitulate features of zebrafish gastrulation outside of the full embryonic context.}, author = {Schauer, Alexandra}, issn = {2663 - 337X}, pages = {190}, publisher = {Institute of Science and Technology Austria}, title = {{Mesendoderm formation in zebrafish gastrulation: The role of extraembryonic tissues}}, doi = {10.15479/at:ista:12891}, year = {2023}, }