@article{13042, abstract = {Let Lc,n denote the size of the longest cycle in G(n, c/n),c >1 constant. We show that there exists a continuous function f(c) such that Lc,n/n→f(c) a.s. for c>20, thus extending a result of Frieze and the author to smaller values of c. Thereafter, for c>20, we determine the limit of the probability that G(n, c/n)contains cycles of every length between the length of its shortest and its longest cycles as n→∞.}, author = {Anastos, Michael}, issn = {1077-8926}, journal = {Electronic Journal of Combinatorics}, number = {2}, publisher = {Electronic Journal of Combinatorics}, title = {{A note on long cycles in sparse random graphs}}, doi = {10.37236/11471}, volume = {30}, year = {2023}, } @misc{12820, abstract = {Disulfide bond formation is fundamentally important for protein structure, and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive microsecond time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfil other favorable contacts. This data repository contains NMR data presented in the associated manuscript}, author = {Schanda, Paul}, publisher = {Institute of Science and Technology Austria}, title = {{Research data of the publication "Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR"}}, doi = {10.15479/AT:ISTA:12820}, year = {2023}, } @article{13039, abstract = {We calculate reflectivities of dynamically compressed water, water-ethanol mixtures, and ammonia at infrared and optical wavelengths with density functional theory and molecular dynamics simulations. The influence of the exchange-correlation functional on the results is examined in detail. Our findings indicate that the consistent use of the HSE hybrid functional reproduces experimental results much better than the commonly used PBE functional. The HSE functional offers not only a more accurate description of the electronic band gap but also shifts the onset of molecular dissociation in the molecular dynamics simulations to significantly higher pressures. We also highlight the importance of using accurate reference standards in reflectivity experiments and reanalyze infrared and optical reflectivity data from recent experiments. Thus, our combined theoretical and experimental work explains and resolves lingering discrepancies between calculations and measurements for the investigated molecular substances under shock compression.}, author = {French, Martin and Bethkenhagen, Mandy and Ravasio, Alessandra and Hernandez, Jean Alexis}, issn = {2469-9969}, journal = {Physical Review B}, number = {13}, publisher = {American Physical Society}, title = {{Ab initio calculation of the reflectivity of molecular fluids under shock compression}}, doi = {10.1103/PhysRevB.107.134109}, volume = {107}, year = {2023}, } @article{13092, abstract = {There is a need for the development of lead-free thermoelectric materials for medium-/high-temperature applications. Here, we report a thiol-free tin telluride (SnTe) precursor that can be thermally decomposed to produce SnTe crystals with sizes ranging from tens to several hundreds of nanometers. We further engineer SnTe–Cu2SnTe3 nanocomposites with a homogeneous phase distribution by decomposing the liquid SnTe precursor containing a dispersion of Cu1.5Te colloidal nanoparticles. The presence of Cu within the SnTe and the segregated semimetallic Cu2SnTe3 phase effectively improves the electrical conductivity of SnTe while simultaneously reducing the lattice thermal conductivity without compromising the Seebeck coefficient. Overall, power factors up to 3.63 mW m–1 K–2 and thermoelectric figures of merit up to 1.04 are obtained at 823 K, which represent a 167% enhancement compared with pristine SnTe.}, author = {Nan, Bingfei and Song, Xuan and Chang, Cheng and Xiao, Ke and Zhang, Yu and Yang, Linlin and Horta, Sharona and Li, Junshan and Lim, Khak Ho and Ibáñez, Maria and Cabot, Andreu}, issn = {1944-8252}, journal = {ACS Applied Materials and Interfaces}, number = {19}, pages = {23380–23389}, publisher = {American Chemical Society}, title = {{Bottom-up synthesis of SnTe-based thermoelectric composites}}, doi = {10.1021/acsami.3c00625}, volume = {15}, year = {2023}, } @article{13094, abstract = {Endocytosis is a key cellular process involved in the uptake of nutrients, pathogens, or the therapy of diseases. Most studies have focused on spherical objects, whereas biologically relevant shapes can be highly anisotropic. In this letter, we use an experimental model system based on Giant Unilamellar Vesicles (GUVs) and dumbbell-shaped colloidal particles to mimic and investigate the first stage of the passive endocytic process: engulfment of an anisotropic object by the membrane. Our model has specific ligand–receptor interactions realized by mobile receptors on the vesicles and immobile ligands on the particles. Through a series of experiments, theory, and molecular dynamics simulations, we quantify the wrapping process of anisotropic dumbbells by GUVs and identify distinct stages of the wrapping pathway. We find that the strong curvature variation in the neck of the dumbbell as well as membrane tension are crucial in determining both the speed of wrapping and the final states.}, author = {Azadbakht, Ali and Meadowcroft, Billie and Varkevisser, Thijs and Šarić, Anđela and Kraft, Daniela J.}, issn = {1530-6992}, journal = {Nano Letters}, number = {10}, pages = {4267–4273}, publisher = {American Chemical Society}, title = {{Wrapping pathways of anisotropic dumbbell particles by Giant Unilamellar Vesicles}}, doi = {10.1021/acs.nanolett.3c00375}, volume = {23}, year = {2023}, } @article{13093, abstract = {The direct, solid state, and reversible conversion between heat and electricity using thermoelectric devices finds numerous potential uses, especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag2Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (zT) of up to 0.76 at 380 K. To improve these values, bismuth sulfide (Bi2S3) particles also prepared in an aqueous solution are incorporated into the Ag2Se matrix. In this way, a series of Ag2Se/Bi2S3 composites with Bi2S3 wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of Bi2S3 significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % Bi2S3 at 370 K. Furthermore, a high average zT value (zTave) of 0.93 in the 300–390 K range is demonstrated.}, author = {Nan, Bingfei and Li, Mengyao and Zhang, Yu and Xiao, Ke and Lim, Khak Ho and Chang, Cheng and Han, Xu and Zuo, Yong and Li, Junshan and Arbiol, Jordi and Llorca, Jordi and Ibáñez, Maria and Cabot, Andreu}, issn = {2637-6113}, journal = {ACS Applied Electronic Materials}, publisher = {American Chemical Society}, title = {{Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature}}, doi = {10.1021/acsaelm.3c00055}, year = {2023}, } @article{13091, abstract = {We use a function field version of the Hardy–Littlewood circle method to study the locus of free rational curves on an arbitrary smooth projective hypersurface of sufficiently low degree. On the one hand this allows us to bound the dimension of the singular locus of the moduli space of rational curves on such hypersurfaces and, on the other hand, it sheds light on Peyre’s reformulation of the Batyrev–Manin conjecture in terms of slopes with respect to the tangent bundle.}, author = {Browning, Timothy D and Sawin, Will}, issn = {1944-7833}, journal = {Algebra and Number Theory}, number = {3}, pages = {719--748}, publisher = {Mathematical Sciences Publishers}, title = {{Free rational curves on low degree hypersurfaces and the circle method}}, doi = {10.2140/ant.2023.17.719}, volume = {17}, year = {2023}, } @article{13117, abstract = {The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality.}, author = {Redchenko, Elena and Poshakinskiy, Alexander V. and Sett, Riya and Zemlicka, Martin and Poddubny, Alexander N. and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Tunable directional photon scattering from a pair of superconducting qubits}}, doi = {10.1038/s41467-023-38761-6}, volume = {14}, year = {2023}, } @article{13106, abstract = {Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >104 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification.}, author = {Sahu, Rishabh and Qiu, Liu and Hease, William J and Arnold, Georg M and Minoguchi, Y. and Rabl, P. and Fink, Johannes M}, issn = {1095-9203}, journal = {Science}, keywords = {Multidisciplinary}, number = {6646}, pages = {718--721}, publisher = {American Association for the Advancement of Science}, title = {{Entangling microwaves with light}}, doi = {10.1126/science.adg3812}, volume = {380}, year = {2023}, } @article{13129, abstract = {We study the representative volume element (RVE) method, which is a method to approximately infer the effective behavior ahom of a stationary random medium. The latter is described by a coefficient field a(x) generated from a given ensemble ⟨⋅⟩ and the corresponding linear elliptic operator −∇⋅a∇. In line with the theory of homogenization, the method proceeds by computing d=3 correctors (d denoting the space dimension). To be numerically tractable, this computation has to be done on a finite domain: the so-called representative volume element, i.e., a large box with, say, periodic boundary conditions. The main message of this article is: Periodize the ensemble instead of its realizations. By this, we mean that it is better to sample from a suitably periodized ensemble than to periodically extend the restriction of a realization a(x) from the whole-space ensemble ⟨⋅⟩. We make this point by investigating the bias (or systematic error), i.e., the difference between ahom and the expected value of the RVE method, in terms of its scaling w.r.t. the lateral size L of the box. In case of periodizing a(x), we heuristically argue that this error is generically O(L−1). In case of a suitable periodization of ⟨⋅⟩ , we rigorously show that it is O(L−d). In fact, we give a characterization of the leading-order error term for both strategies and argue that even in the isotropic case it is generically non-degenerate. We carry out the rigorous analysis in the convenient setting of ensembles ⟨⋅⟩ of Gaussian type, which allow for a straightforward periodization, passing via the (integrable) covariance function. This setting has also the advantage of making the Price theorem and the Malliavin calculus available for optimal stochastic estimates of correctors. We actually need control of second-order correctors to capture the leading-order error term. This is due to inversion symmetry when applying the two-scale expansion to the Green function. As a bonus, we present a stream-lined strategy to estimate the error in a higher-order two-scale expansion of the Green function.}, author = {Clozeau, Nicolas and Josien, Marc and Otto, Felix and Xu, Qiang}, issn = {1615-3383}, journal = {Foundations of Computational Mathematics}, publisher = {Springer Nature}, title = {{Bias in the representative volume element method: Periodize the ensemble instead of its realizations}}, doi = {10.1007/s10208-023-09613-y}, year = {2023}, }