@article{9287, abstract = {The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural (IAA) and synthetic (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network (EE/TGN), rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using Total Internal Reflection Fluorescence (TIRF) microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments. }, author = {Narasimhan, Madhumitha and Gallei, Michelle C and Tan, Shutang and Johnson, Alexander J and Verstraeten, Inge and Li, Lanxin and Rodriguez Solovey, Lesia and Han, Huibin and Himschoot, E and Wang, R and Vanneste, S and Sánchez-Simarro, J and Aniento, F and Adamowski, Maciek and Friml, Jiří}, issn = {1532-2548}, journal = {Plant Physiology}, number = {2}, pages = {1122–1142}, publisher = {Oxford University Press}, title = {{Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking}}, doi = {10.1093/plphys/kiab134}, volume = {186}, year = {2021}, } @phdthesis{10083, abstract = {Plant motions occur across a wide spectrum of timescales, ranging from seed dispersal through bursting (milliseconds) and stomatal opening (minutes) to long-term adaptation of gross architecture. Relatively fast motions include water-driven growth as exemplified by root cell expansion under abiotic/biotic stresses or during gravitropism. A showcase is a root growth inhibition in 30 seconds triggered by the phytohormone auxin. However, the cellular and molecular mechanisms are still largely unknown. This thesis covers the studies about this topic as follows. By taking advantage of microfluidics combined with live imaging, pharmaceutical tools, and transgenic lines, we examined the kinetics of and causal relationship among various auxininduced rapid cellular changes in root growth, apoplastic pH, cytosolic Ca2+, cortical microtubule (CMT) orientation, and vacuolar morphology. We revealed that CMT reorientation and vacuolar constriction are the consequence of growth itself instead of responding directly to auxin. In contrast, auxin induces apoplast alkalinization to rapidly inhibit root growth in 30 seconds. This auxin-triggered apoplast alkalinization results from rapid H+- influx that is contributed by Ca2+ inward channel CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14)-dependent Ca2+ signaling. To dissect which auxin signaling mediates the rapid apoplast alkalinization, we combined microfluidics and genetic engineering to verify that TIR1/AFB receptors conduct a non-transcriptional regulation on Ca2+ and H+ -influx. This non-canonical pathway is mostly mediated by the cytosolic portion of TIR1/AFB. On the other hand, we uncovered, using biochemical and phospho-proteomic analysis, that auxin cell surface signaling component TRANSMEMBRANE KINASE 1 (TMK1) plays a negative role during auxin-trigger apoplast alkalinization and root growth inhibition through directly activating PM H+ -ATPases. Therefore, we discovered that PM H+ -ATPases counteract instead of mediate the auxintriggered rapid H+ -influx, and that TIR1/AFB and TMK1 regulate root growth antagonistically. This opposite effect of TIR1/AFB and TMK1 is consistent during auxin-induced hypocotyl elongation, leading us to explore the relation of two signaling pathways. Assisted with biochemistry and fluorescent imaging, we verified for the first time that TIR1/AFB and TMK1 can interact with each other. The ability of TIR1/AFB binding to membrane lipid provides a basis for the interaction of plasma membrane- and cytosol-localized proteins. Besides, transgenic analysis combined with genetic engineering and biochemistry showed that vi they do function in the same pathway. Particularly, auxin-induced TMK1 increase is TIR1/AFB dependent, suggesting TIR1/AFB regulation on TMK1. Conversely, TMK1 also regulates TIR1/AFB protein levels and thus auxin canonical signaling. To follow the study of rapid growth regulation, we analyzed another rapid growth regulator, signaling peptide RALF1. We showed that RALF1 also triggers a rapid and reversible growth inhibition caused by H + influx, highly resembling but not dependent on auxin. Besides, RALF1 promotes auxin biosynthesis by increasing expression of auxin biosynthesis enzyme YUCCAs and thus induces auxin signaling in ca. 1 hour, contributing to the sustained RALF1-triggered growth inhibition. These studies collectively contribute to understanding rapid regulation on plant cell growth, novel auxin signaling pathway as well as auxin-peptide crosstalk. }, author = {Li, Lanxin}, issn = {2663-337X}, publisher = {Institute of Science and Technology Austria}, title = {{Rapid cell growth regulation in Arabidopsis}}, doi = {10.15479/at:ista:10083}, year = {2021}, } @article{10015, abstract = {Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxincontrolled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.}, author = {Nikonorova, N and Murphy, E and Fonseca de Lima, CF and Zhu, S and van de Cotte, B and Vu, LD and Balcerowicz, D and Li, Lanxin and Kong, X and De Rop, G and Beeckman, T and Friml, Jiří and Vissenberg, K and Morris, PC and Ding, Z and De Smet, I}, issn = {2073-4409}, journal = {Cells}, keywords = {primary root, (phospho)proteomics, auxin, (receptor) kinase}, publisher = {MDPI}, title = {{The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators}}, doi = {10.3390/cells10071665}, volume = {10}, year = {2021}, } @unpublished{10095, abstract = {Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, booktitle = {Research Square}, issn = {2693-5015}, title = {{Cell surface and intracellular auxin signalling for H+-fluxes in root growth}}, doi = {10.21203/rs.3.rs-266395/v3}, year = {2021}, } @phdthesis{10293, abstract = {Indirect reciprocity in evolutionary game theory is a prominent mechanism for explaining the evolution of cooperation among unrelated individuals. In contrast to direct reciprocity, which is based on individuals meeting repeatedly, and conditionally cooperating by using their own experiences, indirect reciprocity is based on individuals’ reputations. If a player helps another, this increases the helper’s public standing, benefitting them in the future. This lets cooperation in the population emerge without individuals having to meet more than once. While the two modes of reciprocity are intertwined, they are difficult to compare. Thus, they are usually studied in isolation. Direct reciprocity can maintain cooperation with simple strategies, and is robust against noise even when players do not remember more than their partner’s last action. Meanwhile, indirect reciprocity requires its successful strategies, or social norms, to be more complex. Exhaustive search previously identified eight such norms, called the “leading eight”, which excel at maintaining cooperation. However, as the first result of this thesis, we show that the leading eight break down once we remove the fundamental assumption that information is synchronized and public, such that everyone agrees on reputations. Once we consider a more realistic scenario of imperfect information, where reputations are private, and individuals occasionally misinterpret or miss observations, the leading eight do not promote cooperation anymore. Instead, minor initial disagreements can proliferate, fragmenting populations into subgroups. In a next step, we consider ways to mitigate this issue. We first explore whether introducing “generosity” can stabilize cooperation when players use the leading eight strategies in noisy environments. This approach of modifying strategies to include probabilistic elements for coping with errors is known to work well in direct reciprocity. However, as we show here, it fails for the more complex norms of indirect reciprocity. Imperfect information still prevents cooperation from evolving. On the other hand, we succeeded to show in this thesis that modifying the leading eight to use “quantitative assessment”, i.e. tracking reputation scores on a scale beyond good and bad, and making overall judgments of others based on a threshold, is highly successful, even when noise increases in the environment. Cooperation can flourish when reputations are more nuanced, and players have a broader understanding what it means to be “good.” Finally, we present a single theoretical framework that unites the two modes of reciprocity despite their differences. Within this framework, we identify a novel simple and successful strategy for indirect reciprocity, which can cope with noisy environments and has an analogue in direct reciprocity. We can also analyze decision making when different sources of information are available. Our results help highlight that for sustaining cooperation, already the most simple rules of reciprocity can be sufficient.}, author = {Schmid, Laura}, issn = {2663-337X}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{Evolution of cooperation via (in)direct reciprocity under imperfect information}}, doi = {10.15479/at:ista:10293}, year = {2021}, } @article{9997, abstract = {Indirect reciprocity is a mechanism for the evolution of cooperation based on social norms. This mechanism requires that individuals in a population observe and judge each other’s behaviors. Individuals with a good reputation are more likely to receive help from others. Previous work suggests that indirect reciprocity is only effective when all relevant information is reliable and publicly available. Otherwise, individuals may disagree on how to assess others, even if they all apply the same social norm. Such disagreements can lead to a breakdown of cooperation. Here we explore whether the predominantly studied ‘leading eight’ social norms of indirect reciprocity can be made more robust by equipping them with an element of generosity. To this end, we distinguish between two kinds of generosity. According to assessment generosity, individuals occasionally assign a good reputation to group members who would usually be regarded as bad. According to action generosity, individuals occasionally cooperate with group members with whom they would usually defect. Using individual-based simulations, we show that the two kinds of generosity have a very different effect on the resulting reputation dynamics. Assessment generosity tends to add to the overall noise and allows defectors to invade. In contrast, a limited amount of action generosity can be beneficial in a few cases. However, even when action generosity is beneficial, the respective simulations do not result in full cooperation. Our results suggest that while generosity can favor cooperation when individuals use the most simple strategies of reciprocity, it is disadvantageous when individuals use more complex social norms.}, author = {Schmid, Laura and Shati, Pouya and Hilbe, Christian and Chatterjee, Krishnendu}, issn = {2045-2322}, journal = {Scientific Reports}, keywords = {Multidisciplinary}, number = {1}, publisher = {Springer Nature}, title = {{The evolution of indirect reciprocity under action and assessment generosity}}, doi = {10.1038/s41598-021-96932-1}, volume = {11}, year = {2021}, } @article{9402, abstract = {Direct and indirect reciprocity are key mechanisms for the evolution of cooperation. Direct reciprocity means that individuals use their own experience to decide whether to cooperate with another person. Indirect reciprocity means that they also consider the experiences of others. Although these two mechanisms are intertwined, they are typically studied in isolation. Here, we introduce a mathematical framework that allows us to explore both kinds of reciprocity simultaneously. We show that the well-known ‘generous tit-for-tat’ strategy of direct reciprocity has a natural analogue in indirect reciprocity, which we call ‘generous scoring’. Using an equilibrium analysis, we characterize under which conditions either of the two strategies can maintain cooperation. With simulations, we additionally explore which kind of reciprocity evolves when members of a population engage in social learning to adapt to their environment. Our results draw unexpected connections between direct and indirect reciprocity while highlighting important differences regarding their evolvability.}, author = {Schmid, Laura and Chatterjee, Krishnendu and Hilbe, Christian and Nowak, Martin A.}, issn = {2397-3374}, journal = {Nature Human Behaviour}, number = {10}, pages = {1292–1302}, publisher = {Springer Nature}, title = {{A unified framework of direct and indirect reciprocity}}, doi = {10.1038/s41562-021-01114-8}, volume = {5}, year = {2021}, } @article{9817, abstract = {Elastic bending of initially flat slender elements allows the realization and economic fabrication of intriguing curved shapes. In this work, we derive an intuitive but rigorous geometric characterization of the design space of plane elastic rods with variable stiffness. It enables designers to determine which shapes are physically viable with active bending by visual inspection alone. Building on these insights, we propose a method for efficiently designing the geometry of a flat elastic rod that realizes a target equilibrium curve, which only requires solving a linear program. We implement this method in an interactive computational design tool that gives feedback about the feasibility of a design, and computes the geometry of the structural elements necessary to realize it within an instant. The tool also offers an iterative optimization routine that improves the fabricability of a model while modifying it as little as possible. In addition, we use our geometric characterization to derive an algorithm for analyzing and recovering the stability of elastic curves that would otherwise snap out of their unstable equilibrium shapes by buckling. We show the efficacy of our approach by designing and manufacturing several physical models that are assembled from flat elements.}, author = {Hafner, Christian and Bickel, Bernd}, issn = {1557-7368}, journal = {ACM Transactions on Graphics}, keywords = {Computing methodologies, shape modeling, modeling and simulation, theory of computation, computational geometry, mathematics of computing, mathematical optimization}, location = {Virtual}, number = {4}, publisher = {Association for Computing Machinery}, title = {{The design space of plane elastic curves}}, doi = {10.1145/3450626.3459800}, volume = {40}, year = {2021}, } @phdthesis{10135, abstract = {Plants maintain the capacity to develop new organs e.g. lateral roots post-embryonically throughout their whole life and thereby flexibly adapt to ever-changing environmental conditions. Plant hormones auxin and cytokinin are the main regulators of the lateral root organogenesis. Additionally to their solo activities, the interaction between auxin and cytokinin plays crucial role in fine-tuning of lateral root development and growth. In particular, cytokinin modulates auxin distribution within the developing lateral root by affecting the endomembrane trafficking of auxin transporter PIN1 and promoting its vacuolar degradation (Marhavý et al., 2011, 2014). This effect is independent of transcription and translation. Therefore, it suggests novel, non-canonical cytokinin activity occuring possibly on the posttranslational level. Impact of cytokinin and other plant hormones on auxin transporters (including PIN1) on the posttranslational level is described in detail in the introduction part of this thesis in a form of a review (Semeradova et al., 2020). To gain insights into the molecular machinery underlying cytokinin effect on the endomembrane trafficking in the plant cell, in particular on the PIN1 degradation, we conducted two large proteomic screens: 1) Identification of cytokinin binding proteins using chemical proteomics. 2) Monitoring of proteomic and phosphoproteomic changes upon cytokinin treatment. In the first screen, we identified DYNAMIN RELATED PROTEIN 2A (DRP2A). We found that DRP2A plays a role in cytokinin regulated processes during the plant growth and that cytokinin treatment promotes destabilization of DRP2A protein. However, the role of DRP2A in the PIN1 degradation remains to be elucidated. In the second screen, we found VACUOLAR PROTEIN SORTING 9A (VPS9A). VPS9a plays crucial role in plant’s response to cytokin and in cytokinin mediated PIN1 degradation. Altogether, we identified proteins, which bind to cytokinin and proteins that in response to cytokinin exhibit significantly changed abundance or phosphorylation pattern. By combining information from these two screens, we can pave our way towards understanding of noncanonical cytokinin effects.}, author = {Semerádová, Hana}, isbn = {978-3-99078-014-5}, issn = {2663-337X}, publisher = {Institute of Science and Technology Austria}, title = {{Molecular mechanisms of the cytokinin-regulated endomembrane trafficking to coordinate plant organogenesis}}, doi = {10.15479/at:ista:10135}, year = {2021}, } @phdthesis{9728, abstract = {Most real-world flows are multiphase, yet we know little about them compared to their single-phase counterparts. Multiphase flows are more difficult to investigate as their dynamics occur in large parameter space and involve complex phenomena such as preferential concentration, turbulence modulation, non-Newtonian rheology, etc. Over the last few decades, experiments in particle-laden flows have taken a back seat in favour of ever-improving computational resources. However, computers are still not powerful enough to simulate a real-world fluid with millions of finite-size particles. Experiments are essential not only because they offer a reliable way to investigate real-world multiphase flows but also because they serve to validate numerical studies and steer the research in a relevant direction. In this work, we have experimentally investigated particle-laden flows in pipes, and in particular, examined the effect of particles on the laminar-turbulent transition and the drag scaling in turbulent flows. For particle-laden pipe flows, an earlier study [Matas et al., 2003] reported how the sub-critical (i.e., hysteretic) transition that occurs via localised turbulent structures called puffs is affected by the addition of particles. In this study, in addition to this known transition, we found a super-critical transition to a globally fluctuating state with increasing particle concentration. At the same time, the Newtonian-type transition via puffs is delayed to larger Reynolds numbers. At an even higher concentration, only the globally fluctuating state is found. The dynamics of particle-laden flows are hence determined by two competing instabilities that give rise to three flow regimes: Newtonian-type turbulence at low, a particle-induced globally fluctuating state at high, and a coexistence state at intermediate concentrations. The effect of particles on turbulent drag is ambiguous, with studies reporting drag reduction, no net change, and even drag increase. The ambiguity arises because, in addition to particle concentration, particle shape, size, and density also affect the net drag. Even similar particles might affect the flow dissimilarly in different Reynolds number and concentration ranges. In the present study, we explored a wide range of both Reynolds number and concentration, using spherical as well as cylindrical particles. We found that the spherical particles do not reduce drag while the cylindrical particles are drag-reducing within a specific Reynolds number interval. The interval strongly depends on the particle concentration and the relative size of the pipe and particles. Within this interval, the magnitude of drag reduction reaches a maximum. These drag reduction maxima appear to fall onto a distinct power-law curve irrespective of the pipe diameter and particle concentration, and this curve can be considered as the maximum drag reduction asymptote for a given fibre shape. Such an asymptote is well known for polymeric flows but had not been identified for particle-laden flows prior to this work.}, author = {Agrawal, Nishchal}, issn = {2663-337X}, keywords = {Drag Reduction, Transition to Turbulence, Multiphase Flows, particle Laden Flows, Complex Flows, Experiments, Fluid Dynamics}, pages = {118}, publisher = {Institute of Science and Technology Austria}, title = {{Transition to turbulence and drag reduction in particle-laden pipe flows}}, doi = {10.15479/at:ista:9728}, year = {2021}, }