@article{10738, abstract = {We prove an adiabatic theorem for the Landau–Pekar equations. This allows us to derive new results on the accuracy of their use as effective equations for the time evolution generated by the Fröhlich Hamiltonian with large coupling constant α. In particular, we show that the time evolution of Pekar product states with coherent phonon field and the electron being trapped by the phonons is well approximated by the Landau–Pekar equations until times short compared to α2.}, author = {Leopold, Nikolai K and Rademacher, Simone Anna Elvira and Schlein, Benjamin and Seiringer, Robert}, issn = {1948-206X}, journal = {Analysis and PDE}, number = {7}, pages = {2079--2100}, publisher = {Mathematical Sciences Publishers}, title = {{ The Landau–Pekar equations: Adiabatic theorem and accuracy}}, doi = {10.2140/APDE.2021.14.2079}, volume = {14}, year = {2021}, } @phdthesis{10429, abstract = {The scalability of concurrent data structures and distributed algorithms strongly depends on reducing the contention for shared resources and the costs of synchronization and communication. We show how such cost reductions can be attained by relaxing the strict consistency conditions required by sequential implementations. In the first part of the thesis, we consider relaxation in the context of concurrent data structures. Specifically, in data structures such as priority queues, imposing strong semantics renders scalability impossible, since a correct implementation of the remove operation should return only the element with highest priority. Intuitively, attempting to invoke remove operations concurrently creates a race condition. This bottleneck can be circumvented by relaxing semantics of the affected data structure, thus allowing removal of the elements which are no longer required to have the highest priority. We prove that the randomized implementations of relaxed data structures provide provable guarantees on the priority of the removed elements even under concurrency. Additionally, we show that in some cases the relaxed data structures can be used to scale the classical algorithms which are usually implemented with the exact ones. In the second part, we study parallel variants of the stochastic gradient descent (SGD) algorithm, which distribute computation among the multiple processors, thus reducing the running time. Unfortunately, in order for standard parallel SGD to succeed, each processor has to maintain a local copy of the necessary model parameter, which is identical to the local copies of other processors; the overheads from this perfect consistency in terms of communication and synchronization can negate the speedup gained by distributing the computation. We show that the consistency conditions required by SGD can be relaxed, allowing the algorithm to be more flexible in terms of tolerating quantized communication, asynchrony, or even crash faults, while its convergence remains asymptotically the same.}, author = {Nadiradze, Giorgi}, issn = {2663-337X}, pages = {132}, publisher = {Institute of Science and Technology Austria}, title = {{On achieving scalability through relaxation}}, doi = {10.15479/at:ista:10429}, year = {2021}, } @inproceedings{10435, abstract = {Decentralized optimization is emerging as a viable alternative for scalable distributed machine learning, but also introduces new challenges in terms of synchronization costs. To this end, several communication-reduction techniques, such as non-blocking communication, quantization, and local steps, have been explored in the decentralized setting. Due to the complexity of analyzing optimization in such a relaxed setting, this line of work often assumes \emph{global} communication rounds, which require additional synchronization. In this paper, we consider decentralized optimization in the simpler, but harder to analyze, \emph{asynchronous gossip} model, in which communication occurs in discrete, randomly chosen pairings among nodes. Perhaps surprisingly, we show that a variant of SGD called \emph{SwarmSGD} still converges in this setting, even if \emph{non-blocking communication}, \emph{quantization}, and \emph{local steps} are all applied \emph{in conjunction}, and even if the node data distributions and underlying graph topology are both \emph{heterogenous}. Our analysis is based on a new connection with multi-dimensional load-balancing processes. We implement this algorithm and deploy it in a super-computing environment, showing that it can outperform previous decentralized methods in terms of end-to-end training time, and that it can even rival carefully-tuned large-batch SGD for certain tasks.}, author = {Nadiradze, Giorgi and Sabour, Amirmojtaba and Davies, Peter and Li, Shigang and Alistarh, Dan-Adrian}, booktitle = {35th Conference on Neural Information Processing Systems}, location = {Sydney, Australia}, publisher = {Neural Information Processing Systems Foundation}, title = {{Asynchronous decentralized SGD with quantized and local updates}}, year = {2021}, } @inproceedings{10593, abstract = {We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its performance have been obtained in the high-dimensional regime. Recently, an Approximate Message Passing (AMP) algorithm has been proposed as an alternative estimator with the potential to improve the accuracy of PCA. However, the existing analysis of AMP requires an initialization that is both correlated with the signal and independent of the noise, which is often unrealistic in practice. In this work, we combine the two methods, and propose to initialize AMP with PCA. Our main result is a rigorous asymptotic characterization of the performance of this estimator. Both the AMP algorithm and its analysis differ from those previously derived in the Gaussian setting: at every iteration, our AMP algorithm requires a specific term to account for PCA initialization, while in the Gaussian case, PCA initialization affects only the first iteration of AMP. The proof is based on a two-phase artificial AMP that first approximates the PCA estimator and then mimics the true AMP. Our numerical simulations show an excellent agreement between AMP results and theoretical predictions, and suggest an interesting open direction on achieving Bayes-optimal performance.}, author = {Mondelli, Marco and Venkataramanan, Ramji}, booktitle = {35th Conference on Neural Information Processing Systems}, isbn = {9781713845393}, issn = {1049-5258}, location = {Virtual}, pages = {29616--29629}, publisher = {Neural Information Processing Systems Foundation}, title = {{PCA initialization for approximate message passing in rotationally invariant models}}, volume = {35}, year = {2021}, } @inproceedings{10594, abstract = {The question of how and why the phenomenon of mode connectivity occurs in training deep neural networks has gained remarkable attention in the research community. From a theoretical perspective, two possible explanations have been proposed: (i) the loss function has connected sublevel sets, and (ii) the solutions found by stochastic gradient descent are dropout stable. While these explanations provide insights into the phenomenon, their assumptions are not always satisfied in practice. In particular, the first approach requires the network to have one layer with order of N neurons (N being the number of training samples), while the second one requires the loss to be almost invariant after removing half of the neurons at each layer (up to some rescaling of the remaining ones). In this work, we improve both conditions by exploiting the quality of the features at every intermediate layer together with a milder over-parameterization condition. More specifically, we show that: (i) under generic assumptions on the features of intermediate layers, it suffices that the last two hidden layers have order of N−−√ neurons, and (ii) if subsets of features at each layer are linearly separable, then no over-parameterization is needed to show the connectivity. Our experiments confirm that the proposed condition ensures the connectivity of solutions found by stochastic gradient descent, even in settings where the previous requirements do not hold.}, author = {Nguyen, Quynh and Bréchet, Pierre and Mondelli, Marco}, booktitle = {35th Conference on Neural Information Processing Systems}, isbn = {9781713845393}, issn = {1049-5258}, location = {Virtual}, publisher = {Neural Information Processing Systems Foundation}, title = {{When are solutions connected in deep networks?}}, volume = {35}, year = {2021}, } @article{9815, abstract = {The quantum bits (qubits) on which superconducting quantum computers are based have energy scales corresponding to photons with GHz frequencies. The energy of photons in the gigahertz domain is too low to allow transmission through the noisy room-temperature environment, where the signal would be lost in thermal noise. Optical photons, on the other hand, have much higher energies, and signals can be detected using highly efficient single-photon detectors. Transduction from microwave to optical frequencies is therefore a potential enabling technology for quantum devices. However, in such a device the optical pump can be a source of thermal noise and thus degrade the fidelity; the similarity of input microwave state to the output optical state. In order to investigate the magnitude of this effect we model the sub-Kelvin thermal behavior of an electro-optic transducer based on a lithium niobate whispering gallery mode resonator. We find that there is an optimum power level for a continuous pump, whilst pulsed operation of the pump increases the fidelity of the conversion.}, author = {Mobassem, Sonia and Lambert, Nicholas J. and Rueda Sanchez, Alfredo R and Fink, Johannes M and Leuchs, Gerd and Schwefel, Harald G.L.}, issn = {2058-9565}, journal = {Quantum Science and Technology}, number = {4}, publisher = {IOP Publishing}, title = {{Thermal noise in electro-optic devices at cryogenic temperatures}}, doi = {10.1088/2058-9565/ac0f36}, volume = {6}, year = {2021}, } @unpublished{9978, abstract = {Redox mediators could catalyse otherwise slow and energy-inefficient cycling of Li-S and Li-O 2 batteries by shuttling electrons/holes between the electrode and the solid insulating storage materials. For mediators to work efficiently they need to oxidize the solid with fast kinetics yet the lowest possible overpotential. Here, we found that when the redox potentials of mediators are tuned via, e.g., Li + concentration in the electrolyte, they exhibit distinct threshold potentials, where the kinetics accelerate several-fold within a range as small as 10 mV. This phenomenon is independent of types of mediators and electrolyte. The acceleration originates from the overpotentials required to activate fast Li + /e – extraction and the following chemical step at specific abundant surface facets. Efficient redox catalysis at insulating solids requires therefore carefully considering the surface conditions of the storage materials and electrolyte-dependent redox potentials, which may be tuned by salt concentrations or solvents.}, author = {Cao, Deqing and Shen, Xiaoxiao and Wang, Aiping and Yu, Fengjiao and Wu, Yuping and Shi, Siqi and Freunberger, Stefan Alexander and Chen, Yuhui}, booktitle = {Research Square}, issn = {2693-5015}, keywords = {Catalysis, Energy engineering, Materials theory and modeling}, pages = {21}, publisher = {Research Square}, title = {{Sharp kinetic acceleration potentials during mediated redox catalysis of insulators}}, doi = {10.21203/rs.3.rs-750965/v1}, year = {2021}, } @article{8730, abstract = {P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict at the blood–brain barrier (BBB) the brain distribution of the majority of currently known molecularly targeted anticancer drugs. To improve brain delivery of dual ABCB1/ABCG2 substrates, both ABCB1 and ABCG2 need to be inhibited simultaneously at the BBB. We examined the feasibility of simultaneous ABCB1/ABCG2 inhibition with i.v. co-infusion of erlotinib and tariquidar by studying brain distribution of the model ABCB1/ABCG2 substrate [11C]erlotinib in mice and rhesus macaques with PET. Tolerability of the erlotinib/tariquidar combination was assessed in human embryonic stem cell-derived cerebral organoids. In mice and macaques, baseline brain distribution of [11C]erlotinib was low (brain distribution volume, VT,brain < 0.3 mL/cm3). Co-infusion of erlotinib and tariquidar increased VT,brain in mice by 3.0-fold and in macaques by 3.4- to 5.0-fold, while infusion of erlotinib alone or tariquidar alone led to less pronounced VT,brain increases in both species. Treatment of cerebral organoids with erlotinib/tariquidar led to an induction of Caspase-3-dependent apoptosis. Co-infusion of erlotinib/tariquidar may potentially allow for complete ABCB1/ABCG2 inhibition at the BBB, while simultaneously achieving brain-targeted EGFR inhibition. Our protocol may be applicable to enhance brain delivery of molecularly targeted anticancer drugs for a more effective treatment of brain tumors.}, author = {Tournier, N and Goutal, S and Mairinger, S and Lozano, IH and Filip, T and Sauberer, M and Caillé, F and Breuil, L and Stanek, J and Freeman, AF and Novarino, Gaia and Truillet, C and Wanek, T and Langer, O}, issn = {1559-7016}, journal = {Journal of Cerebral Blood Flow and Metabolism}, number = {7}, pages = {1634--1646}, publisher = {SAGE Publications}, title = {{Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [11C]erlotinib}}, doi = {10.1177/0271678X20965500}, volume = {41}, year = {2021}, } @article{9383, abstract = {A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from present‐day populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us.}, author = {Stankowski, Sean and Ravinet, Mark}, issn = {1558-5646}, journal = {Evolution}, number = {6}, pages = {1256--1273}, publisher = {Oxford University Press}, title = {{Defining the speciation continuum}}, doi = {10.1111/evo.14215}, volume = {75}, year = {2021}, } @article{10223, abstract = {Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, issn = {14764687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7884}, pages = {273--277}, publisher = {Springer Nature}, title = {{Cell surface and intracellular auxin signalling for H+ fluxes in root growth}}, doi = {10.1038/s41586-021-04037-6}, volume = {599}, year = {2021}, }