@misc{13069, abstract = {To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell-autonomous. We have discovered that, in Caenorhabditis elegans, neuronal Heat shock Factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR)- causes extensive fat remodelling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine, and a global shift in the saturation levels of plasma membrane’s phospholipids. The observed remodelling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least six TAX-2/TAX-4 cGMP gated channel expressing sensory neurons and TGF-β/BMP are required for signalling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodelling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell non-autonomously coordinate membrane saturation and composition across tissues in a multicellular animal.}, author = {Chauve, Laetitia and Hodge, Francesca and Murdoch, Sharlene and Masoudzadeh, Fatemah and Mann, Harry-Jack and Lopez-Clavijo, Andrea and Okkenhaug, Hanneke and West, Greg and Sousa, Bebiana C. and Segonds-Pichon, Anne and Li, Cheryl and Wingett, Steven and Kienberger, Hermine and Kleigrewe, Karin and de Bono, Mario and Wakelam, Michael and Casanueva, Olivia}, publisher = {Zenodo}, title = {{Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans}}, doi = {10.5281/ZENODO.5519410}, year = {2021}, } @inproceedings{10325, abstract = {Since the inception of Bitcoin, a plethora of distributed ledgers differing in design and purpose has been created. While by design, blockchains provide no means to securely communicate with external systems, numerous attempts towards trustless cross-chain communication have been proposed over the years. Today, cross-chain communication (CCC) plays a fundamental role in cryptocurrency exchanges, scalability efforts via sharding, extension of existing systems through sidechains, and bootstrapping of new blockchains. Unfortunately, existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence in their correctness and composability. We provide the first systematic exposition of cross-chain communication protocols. We formalize the underlying research problem and show that CCC is impossible without a trusted third party, contrary to common beliefs in the blockchain community. With this result in mind, we develop a framework to design new and evaluate existing CCC protocols, focusing on the inherent trust assumptions thereof, and derive a classification covering the field of cross-chain communication to date. We conclude by discussing open challenges for CCC research and the implications of interoperability on the security and privacy of blockchains.}, author = {Zamyatin, Alexei and Al-Bassam, Mustafa and Zindros, Dionysis and Kokoris Kogias, Eleftherios and Moreno-Sanchez, Pedro and Kiayias, Aggelos and Knottenbelt, William J.}, booktitle = {25th International Conference on Financial Cryptography and Data Security}, isbn = {9-783-6626-4330-3}, issn = {1611-3349}, location = {Virtual}, pages = {3--36}, publisher = {Springer Nature}, title = {{SoK: Communication across distributed ledgers}}, doi = {10.1007/978-3-662-64331-0_1}, volume = {12675 }, year = {2021}, } @inproceedings{10324, abstract = {Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain payments. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first payment channel that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the channel by introducing a rational committee of external parties, called wardens. Hence, if a party wants to close a channel unilaterally, it can only get the committee’s approval for the last valid state. Additionally, Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead, Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to any rational parties. We formally define and prove for Brick the properties a payment channel construction should fulfill. We also design incentives for Brick such that honest and rational behavior aligns. Finally, we provide a reference implementation of the smart contracts in Solidity.}, author = {Avarikioti, Zeta and Kokoris Kogias, Eleftherios and Wattenhofer, Roger and Zindros, Dionysis}, booktitle = {25th International Conference on Financial Cryptography and Data Security}, isbn = {9-783-6626-4330-3}, issn = {1611-3349}, location = {Virtual}, pages = {209--230}, publisher = {Springer Nature}, title = {{Brick: Asynchronous incentive-compatible payment channels}}, doi = {10.1007/978-3-662-64331-0_11}, volume = {12675 }, year = {2021}, } @article{10363, abstract = {Erythropoietin enhances oxygen delivery and reduces hypoxia-induced cell death, but its pro-thrombotic activity is problematic for use of erythropoietin in treating hypoxia. We constructed a fusion protein that stimulates red blood cell production and neuroprotection without triggering platelet production, a marker for thrombosis. The protein consists of an anti-glycophorin A nanobody and an erythropoietin mutant (L108A). The mutation reduces activation of erythropoietin receptor homodimers that induce erythropoiesis and thrombosis, but maintains the tissue-protective signaling. The binding of the nanobody element to glycophorin A rescues homodimeric erythropoietin receptor activation on red blood cell precursors. In a cell proliferation assay, the fusion protein is active at 10−14 M, allowing an estimate of the number of receptor–ligand complexes needed for signaling. This fusion protein stimulates erythroid cell proliferation in vitro and in mice, and shows neuroprotective activity in vitro. Our erythropoietin fusion protein presents a novel molecule for treating hypoxia.}, author = {Lee, Jungmin and Vernet, Andyna and Gruber, Nathalie and Kready, Kasia M. and Burrill, Devin R. and Way, Jeffrey C. and Silver, Pamela A.}, issn = {1741-0134}, journal = {Protein Engineering, Design and Selection}, publisher = {Oxford University Press}, title = {{Rational engineering of an erythropoietin fusion protein to treat hypoxia}}, doi = {10.1093/protein/gzab025}, volume = {34}, year = {2021}, } @article{10366, author = {Heisenberg, Carl-Philipp J and Lennon, Ana Maria and Mayor, Roberto and Salbreux, Guillaume}, issn = {2667-2901}, journal = {Cells and Development}, number = {12}, publisher = {Elsevier}, title = {{Special rebranding issue: “Quantitative cell and developmental biology”}}, doi = {10.1016/j.cdev.2021.203758}, volume = {168}, year = {2021}, } @article{10402, abstract = {Branching morphogenesis governs the formation of many organs such as lung, kidney, and the neurovascular system. Many studies have explored system-specific molecular and cellular regulatory mechanisms, as well as self-organizing rules underlying branching morphogenesis. However, in addition to local cues, branched tissue growth can also be influenced by global guidance. Here, we develop a theoretical framework for a stochastic self-organized branching process in the presence of external cues. Combining analytical theory with numerical simulations, we predict differential signatures of global vs. local regulatory mechanisms on the branching pattern, such as angle distributions, domain size, and space-filling efficiency. We find that branch alignment follows a generic scaling law determined by the strength of global guidance, while local interactions influence the tissue density but not its overall territory. Finally, using zebrafish innervation as a model system, we test these key features of the model experimentally. Our work thus provides quantitative predictions to disentangle the role of different types of cues in shaping branched structures across scales.}, author = {Ucar, Mehmet C and Kamenev, Dmitrii and Sunadome, Kazunori and Fachet, Dominik C and Lallemend, Francois and Adameyko, Igor and Hadjab, Saida and Hannezo, Edouard B}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Theory of branching morphogenesis by local interactions and global guidance}}, doi = {10.1038/s41467-021-27135-5}, volume = {12}, year = {2021}, } @inproceedings{10407, abstract = {Digital hardware Trojans are integrated circuits whose implementation differ from the specification in an arbitrary and malicious way. For example, the circuit can differ from its specified input/output behavior after some fixed number of queries (known as “time bombs”) or on some particular input (known as “cheat codes”). To detect such Trojans, countermeasures using multiparty computation (MPC) or verifiable computation (VC) have been proposed. On a high level, to realize a circuit with specification F one has more sophisticated circuits F⋄ manufactured (where F⋄ specifies a MPC or VC of F ), and then embeds these F⋄ ’s into a master circuit which must be trusted but is relatively simple compared to F . Those solutions impose a significant overhead as F⋄ is much more complex than F , also the master circuits are not exactly trivial. In this work, we show that in restricted settings, where F has no evolving state and is queried on independent inputs, we can achieve a relaxed security notion using very simple constructions. In particular, we do not change the specification of the circuit at all (i.e., F=F⋄ ). Moreover the master circuit basically just queries a subset of its manufactured circuits and checks if they’re all the same. The security we achieve guarantees that, if the manufactured circuits are initially tested on up to T inputs, the master circuit will catch Trojans that try to deviate on significantly more than a 1/T fraction of the inputs. This bound is optimal for the type of construction considered, and we provably achieve it using a construction where 12 instantiations of F need to be embedded into the master. We also discuss an extremely simple construction with just 2 instantiations for which we conjecture that it already achieves the optimal bound.}, author = {Chakraborty, Suvradip and Dziembowski, Stefan and Gałązka, Małgorzata and Lizurej, Tomasz and Pietrzak, Krzysztof Z and Yeo, Michelle X}, isbn = {9-783-0309-0452-4}, issn = {1611-3349}, location = {Raleigh, NC, United States}, pages = {397--428}, publisher = {Springer Nature}, title = {{Trojan-resilience without cryptography}}, doi = {10.1007/978-3-030-90453-1_14}, volume = {13043}, year = {2021}, } @article{10403, abstract = {Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling. We found that postnatal maturation of postsynaptic strength was homogeneously reduced along the somatodendritic axis, but dendritic integration was always sublinear. However, dendritic branching increased without changes in synapse density, leading to a substantial gain in distal inputs. Thus, changes in synapse distribution, rather than dendrite cable properties, are the dominant mechanism underlying the maturation of neuronal computation. These mechanisms favor the emergence of a spatially compartmentalized two-stage integration model promoting location-dependent integration within dendritic subunits.}, author = {Biane, Celia and Rückerl, Florian and Abrahamsson, Therese and Saint-Cloment, Cécile and Mariani, Jean and Shigemoto, Ryuichi and Digregorio, David A. and Sherrard, Rachel M. and Cathala, Laurence}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Developmental emergence of two-stage nonlinear synaptic integration in cerebellar interneurons}}, doi = {10.7554/eLife.65954}, volume = {10}, year = {2021}, } @article{10401, abstract = {Theoretical and experimental studies of the interaction between spins and temperature are vital for the development of spin caloritronics, as they dictate the design of future devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two temperature reservoirs connected by a one-dimensional link. First, we argue that the dynamics in the link can be described using an inhomogeneous Heisenberg spin chain whose couplings are defined by the local temperature. Second, we show the existence of a spin current in a system with a temperature difference by studying the dynamics that follows the spin-flip of an atom in the link. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current similar to the spin Seebeck effect.}, author = {Barfknecht, Rafael E. and Foerster, Angela and Zinner, Nikolaj T. and Volosniev, Artem}, issn = {23993650}, journal = {Communications Physics}, number = {1}, publisher = {Springer Nature}, title = {{Generation of spin currents by a temperature gradient in a two-terminal device}}, doi = {10.1038/s42005-021-00753-7}, volume = {4}, year = {2021}, } @article{10404, abstract = {While convolutional neural networks (CNNs) have found wide adoption as state-of-the-art models for image-related tasks, their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper presents Perturber, a web-based application that allows users to instantaneously explore how CNN activations and predictions evolve when a 3D input scene is interactively perturbed. Perturber offers a large variety of scene modifications, such as camera controls, lighting and shading effects, background modifications, object morphing, as well as adversarial attacks, to facilitate the discovery of potential vulnerabilities. Fine-tuned model versions can be directly compared for qualitative evaluation of their robustness. Case studies with machine learning experts have shown that Perturber helps users to quickly generate hypotheses about model vulnerabilities and to qualitatively compare model behavior. Using quantitative analyses, we could replicate users’ insights with other CNN architectures and input images, yielding new insights about the vulnerability of adversarially trained models.}, author = {Sietzen, Stefan and Lechner, Mathias and Borowski, Judy and Hasani, Ramin and Waldner, Manuela}, issn = {1467-8659}, journal = {Computer Graphics Forum}, number = {7}, pages = {253--264}, publisher = {Wiley}, title = {{Interactive analysis of CNN robustness}}, doi = {10.1111/cgf.14418}, volume = {40}, year = {2021}, }