@article{9909, abstract = {Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition.}, author = {Zeng, Yinwei and Verstraeten, Inge and Trinh, Hoang Khai and Heugebaert, Thomas and Stevens, Christian V. and Garcia-Maquilon, Irene and Rodriguez, Pedro L. and Vanneste, Steffen and Geelen, Danny}, issn = {20734425}, journal = {Genes}, number = {8}, publisher = {MDPI}, title = {{Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling}}, doi = {10.3390/genes12081141}, volume = {12}, year = {2021}, } @article{9908, abstract = {About eight million animal species are estimated to live on Earth, and all except those belonging to one subphylum are invertebrates. Invertebrates are incredibly diverse in their morphologies, life histories, and in the range of the ecological niches that they occupy. A great variety of modes of reproduction and sex determination systems is also observed among them, and their mosaic-distribution across the phylogeny shows that transitions between them occur frequently and rapidly. Genetic conflict in its various forms is a long-standing theory to explain what drives those evolutionary transitions. Here, we review (1) the different modes of reproduction among invertebrate species, highlighting sexual reproduction as the probable ancestral state; (2) the paradoxical diversity of sex determination systems; (3) the different types of genetic conflicts that could drive the evolution of such different systems.}, author = {Picard, Marion A L and Vicoso, Beatriz and Bertrand, Stéphanie and Escriva, Hector}, issn = {20734425}, journal = {Genes}, number = {8}, publisher = {MDPI}, title = {{Diversity of modes of reproduction and sex determination systems in invertebrates, and the putative contribution of genetic conflict}}, doi = {10.3390/genes12081136}, volume = {12}, year = {2021}, }