TY - JOUR AB - Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane–electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics. AU - Cai, Jiarong AU - Zhang, Wei AU - Xu, Liguang AU - Hao, Changlong AU - Ma, Wei AU - Sun, Maozhong AU - Wu, Xiaoling AU - Qin, Xian AU - Colombari, Felippe Mariano AU - de Moura, André Farias AU - Xu, Jiahui AU - Silva, Mariana Cristina AU - Carneiro-Neto, Evaldo Batista AU - Gomes, Weverson Rodrigues AU - Vallée, Renaud A. L. AU - Pereira, Ernesto Chaves AU - Liu, Xiaogang AU - Xu, Chuanlai AU - Klajn, Rafal AU - Kotov, Nicholas A. AU - Kuang, Hua ID - 13352 IS - 4 JF - Nature Nanotechnology KW - Electrical and Electronic Engineering KW - Condensed Matter Physics KW - General Materials Science KW - Biomedical Engineering KW - Atomic and Molecular Physics KW - and Optics KW - Bioengineering SN - 1748-3387 TI - Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles VL - 17 ER - TY - JOUR AB - Confining molecules can fundamentally change their chemical and physical properties. Confinement effects are considered instrumental at various stages of the origins of life, and life continues to rely on layers of compartmentalization to maintain an out-of-equilibrium state and efficiently synthesize complex biomolecules under mild conditions. As interest in synthetic confined systems grows, we are realizing that the principles governing reactivity under confinement are the same in abiological systems as they are in nature. In this Review, we categorize the ways in which nanoconfinement effects impact chemical reactivity in synthetic systems. Under nanoconfinement, chemical properties can be modulated to increase reaction rates, enhance selectivity and stabilize reactive species. Confinement effects also lead to changes in physical properties. The fluorescence of light emitters, the colours of dyes and electronic communication between electroactive species can all be tuned under confinement. Within each of these categories, we elucidate design principles and strategies that are widely applicable across a range of confined systems, specifically highlighting examples of different nanocompartments that influence reactivity in similar ways. AU - Grommet, Angela B. AU - Feller, Moran AU - Klajn, Rafal ID - 13367 JF - Nature Nanotechnology KW - Electrical and Electronic Engineering KW - Condensed Matter Physics KW - General Materials Science KW - Biomedical Engineering KW - Atomic and Molecular Physics KW - and Optics KW - Bioengineering SN - 1748-3387 TI - Chemical reactivity under nanoconfinement VL - 15 ER - TY - JOUR AB - Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information. AU - Kalaee, Mahmoud AU - Mirhosseini, Mohammad AU - Dieterle, Paul B. AU - Peruzzo, Matilda AU - Fink, Johannes M AU - Painter, Oskar ID - 6053 IS - 4 JF - Nature Nanotechnology SN - 1748-3387 TI - Quantum electromechanics of a hypersonic crystal VL - 14 ER - TY - JOUR AB - The chemical behaviour of molecules can be significantly modified by confinement to volumes comparable to the dimensions of the molecules. Although such confined spaces can be found in various nanostructured materials, such as zeolites, nanoporous organic frameworks and colloidal nanocrystal assemblies, the slow diffusion of molecules in and out of these materials has greatly hampered studying the effect of confinement on their physicochemical properties. Here, we show that this diffusion limitation can be overcome by reversibly creating and destroying confined environments by means of ultraviolet and visible light irradiation. We use colloidal nanocrystals functionalized with light-responsive ligands that readily self-assemble and trap various molecules from the surrounding bulk solution. Once trapped, these molecules can undergo chemical reactions with increased rates and with stereoselectivities significantly different from those in bulk solution. Illumination with visible light disassembles these nanoflasks, releasing the product in solution and thereby establishes a catalytic cycle. These dynamic nanoflasks can be useful for studying chemical reactivities in confined environments and for synthesizing molecules that are otherwise hard to achieve in bulk solution. AU - Zhao, Hui AU - Sen, Soumyo AU - Udayabhaskararao, T. AU - Sawczyk, Michał AU - Kučanda, Kristina AU - Manna, Debasish AU - Kundu, Pintu K. AU - Lee, Ji-Woong AU - Král, Petr AU - Klajn, Rafal ID - 13392 JF - Nature Nanotechnology KW - Electrical and Electronic Engineering KW - Condensed Matter Physics KW - General Materials Science KW - Biomedical Engineering KW - Atomic and Molecular Physics KW - and Optics KW - Bioengineering SN - 1748-3387 TI - Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks VL - 11 ER -