--- _id: '14657' abstract: - lang: eng text: 'Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader’s fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader’s dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader’s connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader’s fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.' acknowledgement: K.C. acknowledges support from the ERC CoG 863818(ForM-SMArt). J.T. is supported by Center for Foundations ofModern Computer Science (Charles Univ. project UNCE/SCI/004). article_number: '20230355' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Kamran full_name: Kaveh, Kamran last_name: Kaveh - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. Evolutionary dynamics of mutants that modify population structure. Journal of the Royal Society, Interface. 2023;20(208). doi:10.1098/rsif.2023.0355 apa: Tkadlec, J., Kaveh, K., Chatterjee, K., & Nowak, M. A. (2023). Evolutionary dynamics of mutants that modify population structure. Journal of the Royal Society, Interface. The Royal Society. https://doi.org/10.1098/rsif.2023.0355 chicago: Tkadlec, Josef, Kamran Kaveh, Krishnendu Chatterjee, and Martin A. Nowak. “Evolutionary Dynamics of Mutants That Modify Population Structure.” Journal of the Royal Society, Interface. The Royal Society, 2023. https://doi.org/10.1098/rsif.2023.0355. ieee: J. Tkadlec, K. Kaveh, K. Chatterjee, and M. A. Nowak, “Evolutionary dynamics of mutants that modify population structure,” Journal of the Royal Society, Interface, vol. 20, no. 208. The Royal Society, 2023. ista: Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. 2023. Evolutionary dynamics of mutants that modify population structure. Journal of the Royal Society, Interface. 20(208), 20230355. mla: Tkadlec, Josef, et al. “Evolutionary Dynamics of Mutants That Modify Population Structure.” Journal of the Royal Society, Interface, vol. 20, no. 208, 20230355, The Royal Society, 2023, doi:10.1098/rsif.2023.0355. short: J. Tkadlec, K. Kaveh, K. Chatterjee, M.A. Nowak, Journal of the Royal Society, Interface 20 (2023). date_created: 2023-12-10T23:00:58Z date_published: 2023-11-29T00:00:00Z date_updated: 2023-12-11T11:17:53Z day: '29' ddc: - '000' - '570' department: - _id: KrCh doi: 10.1098/rsif.2023.0355 ec_funded: 1 external_id: pmid: - '38016637' file: - access_level: open_access checksum: 2eefab13127c7786dbd33303c482a004 content_type: application/pdf creator: dernst date_created: 2023-12-11T11:10:32Z date_updated: 2023-12-11T11:10:32Z file_id: '14673' file_name: 2023_RoyalInterface_Tkadlec.pdf file_size: 1720243 relation: main_file success: 1 file_date_updated: 2023-12-11T11:10:32Z has_accepted_license: '1' intvolume: ' 20' issue: '208' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Journal of the Royal Society, Interface publication_identifier: eissn: - 1742-5662 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: Evolutionary dynamics of mutants that modify population structure tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2023' ... --- _id: '7651' abstract: - lang: eng text: The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods. article_number: '20190721' article_processing_charge: No article_type: original author: - first_name: J. full_name: Larsson, J. last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: S. full_name: Bengmark, S. last_name: Bengmark - first_name: T. full_name: Lundh, T. last_name: Lundh - first_name: R. K. full_name: Butlin, R. K. last_name: Butlin citation: ama: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 2020;17(163). doi:10.1098/rsif.2019.0721 apa: Larsson, J., Westram, A. M., Bengmark, S., Lundh, T., & Butlin, R. K. (2020). A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. The Royal Society. https://doi.org/10.1098/rsif.2019.0721 chicago: Larsson, J., Anja M Westram, S. Bengmark, T. Lundh, and R. K. Butlin. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface. The Royal Society, 2020. https://doi.org/10.1098/rsif.2019.0721. ieee: J. Larsson, A. M. Westram, S. Bengmark, T. Lundh, and R. K. Butlin, “A developmentally descriptive method for quantifying shape in gastropod shells,” Journal of The Royal Society Interface, vol. 17, no. 163. The Royal Society, 2020. ista: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. 2020. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 17(163), 20190721. mla: Larsson, J., et al. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface, vol. 17, no. 163, 20190721, The Royal Society, 2020, doi:10.1098/rsif.2019.0721. short: J. Larsson, A.M. Westram, S. Bengmark, T. Lundh, R.K. Butlin, Journal of The Royal Society Interface 17 (2020). date_created: 2020-04-08T15:19:17Z date_published: 2020-02-01T00:00:00Z date_updated: 2021-01-12T08:14:41Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsif.2019.0721 file: - access_level: open_access checksum: 4eb102304402f5c56432516b84df86d6 content_type: application/pdf creator: dernst date_created: 2020-04-14T12:31:16Z date_updated: 2020-07-14T12:48:01Z file_id: '7660' file_name: 2020_JournRoyalSociety_Larsson.pdf file_size: 1556190 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 17' issue: '163' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Journal of The Royal Society Interface publication_identifier: eissn: - 1742-5662 issn: - 1742-5689 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: 1 status: public title: A developmentally descriptive method for quantifying shape in gastropod shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2020' ... --- _id: '198' abstract: - lang: eng text: We consider a class of students learning a language from a teacher. The situation can be interpreted as a group of child learners receiving input from the linguistic environment. The teacher provides sample sentences. The students try to learn the grammar from the teacher. In addition to just listening to the teacher, the students can also communicate with each other. The students hold hypotheses about the grammar and change them if they receive counter evidence. The process stops when all students have converged to the correct grammar. We study how the time to convergence depends on the structure of the classroom by introducing and evaluating various complexity measures. We find that structured communication between students, although potentially introducing confusion, can greatly reduce some of the complexity measures. Our theory can also be interpreted as applying to the scientific process, where nature is the teacher and the scientists are the students. article_number: '20180073' article_processing_charge: No article_type: original author: - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Ibsen-Jensen R, Tkadlec J, Chatterjee K, Nowak M. Language acquisition with communication between learners. Journal of the Royal Society Interface. 2018;15(140). doi:10.1098/rsif.2018.0073 apa: Ibsen-Jensen, R., Tkadlec, J., Chatterjee, K., & Nowak, M. (2018). Language acquisition with communication between learners. Journal of the Royal Society Interface. The Royal Society. https://doi.org/10.1098/rsif.2018.0073 chicago: Ibsen-Jensen, Rasmus, Josef Tkadlec, Krishnendu Chatterjee, and Martin Nowak. “Language Acquisition with Communication between Learners.” Journal of the Royal Society Interface. The Royal Society, 2018. https://doi.org/10.1098/rsif.2018.0073. ieee: R. Ibsen-Jensen, J. Tkadlec, K. Chatterjee, and M. Nowak, “Language acquisition with communication between learners,” Journal of the Royal Society Interface, vol. 15, no. 140. The Royal Society, 2018. ista: Ibsen-Jensen R, Tkadlec J, Chatterjee K, Nowak M. 2018. Language acquisition with communication between learners. Journal of the Royal Society Interface. 15(140), 20180073. mla: Ibsen-Jensen, Rasmus, et al. “Language Acquisition with Communication between Learners.” Journal of the Royal Society Interface, vol. 15, no. 140, 20180073, The Royal Society, 2018, doi:10.1098/rsif.2018.0073. short: R. Ibsen-Jensen, J. Tkadlec, K. Chatterjee, M. Nowak, Journal of the Royal Society Interface 15 (2018). date_created: 2018-12-11T11:45:09Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-10-18T06:36:00Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1098/rsif.2018.0073 ec_funded: 1 external_id: isi: - '000428576200023' pmid: - '29593089' file: - access_level: open_access checksum: 444e1a9d98eb0e780671be82b13025f3 content_type: application/pdf creator: dernst date_created: 2019-02-12T07:54:37Z date_updated: 2020-07-14T12:45:22Z file_id: '5955' file_name: 2018_RS_IbsenJensen.pdf file_size: 219837 relation: main_file file_date_updated: 2020-07-14T12:45:22Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '140' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Journal of the Royal Society Interface publication_identifier: eissn: - 1742-5662 publication_status: published publisher: The Royal Society publist_id: '7715' quality_controlled: '1' related_material: link: - relation: supplementary_material url: https://dx.doi.org/10.6084/m9.figshare.c.4028971 record: - id: '9814' relation: research_data status: public scopus_import: '1' status: public title: Language acquisition with communication between learners type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2018' ...