--- _id: '7339' abstract: - lang: eng text: Cytoskeletal filaments such as microtubules (MTs) and filamentous actin (F-actin) dynamically support cell structure and functions. In central presynaptic terminals, F-actin is expressed along the release edge and reportedly plays diverse functional roles, but whether axonal MTs extend deep into terminals and play any physiological role remains controversial. At the calyx of Held in rats of either sex, confocal and high-resolution microscopy revealed that MTs enter deep into presynaptic terminal swellings and partially colocalize with a subset of synaptic vesicles (SVs). Electrophysiological analysis demonstrated that depolymerization of MTs specifically prolonged the slow-recovery time component of EPSCs from short-term depression induced by a train of high-frequency stimulation, whereas depolymerization of F-actin specifically prolonged the fast-recovery component. In simultaneous presynaptic and postsynaptic action potential recordings, depolymerization of MTs or F-actin significantly impaired the fidelity of high-frequency neurotransmission. We conclude that MTs and F-actin differentially contribute to slow and fast SV replenishment, thereby maintaining high-frequency neurotransmission. article_processing_charge: No article_type: original author: - first_name: Lashmi full_name: Piriya Ananda Babu, Lashmi last_name: Piriya Ananda Babu - first_name: Han Ying full_name: Wang, Han Ying last_name: Wang - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Laurent full_name: Guillaud, Laurent last_name: Guillaud - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: Piriya Ananda Babu L, Wang HY, Eguchi K, Guillaud L, Takahashi T. Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission. Journal of neuroscience. 2020;40(1):131-142. doi:10.1523/JNEUROSCI.1571-19.2019 apa: Piriya Ananda Babu, L., Wang, H. Y., Eguchi, K., Guillaud, L., & Takahashi, T. (2020). Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission. Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.1571-19.2019 chicago: Piriya Ananda Babu, Lashmi, Han Ying Wang, Kohgaku Eguchi, Laurent Guillaud, and Tomoyuki Takahashi. “Microtubule and Actin Differentially Regulate Synaptic Vesicle Cycling to Maintain High-Frequency Neurotransmission.” Journal of Neuroscience. Society for Neuroscience, 2020. https://doi.org/10.1523/JNEUROSCI.1571-19.2019. ieee: L. Piriya Ananda Babu, H. Y. Wang, K. Eguchi, L. Guillaud, and T. Takahashi, “Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission,” Journal of neuroscience, vol. 40, no. 1. Society for Neuroscience, pp. 131–142, 2020. ista: Piriya Ananda Babu L, Wang HY, Eguchi K, Guillaud L, Takahashi T. 2020. Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission. Journal of neuroscience. 40(1), 131–142. mla: Piriya Ananda Babu, Lashmi, et al. “Microtubule and Actin Differentially Regulate Synaptic Vesicle Cycling to Maintain High-Frequency Neurotransmission.” Journal of Neuroscience, vol. 40, no. 1, Society for Neuroscience, 2020, pp. 131–42, doi:10.1523/JNEUROSCI.1571-19.2019. short: L. Piriya Ananda Babu, H.Y. Wang, K. Eguchi, L. Guillaud, T. Takahashi, Journal of Neuroscience 40 (2020) 131–142. date_created: 2020-01-19T23:00:38Z date_published: 2020-01-02T00:00:00Z date_updated: 2023-08-17T14:25:23Z day: '02' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.1571-19.2019 external_id: isi: - '000505167600013' pmid: - '31767677' file: - access_level: open_access checksum: 92f5e8a47f454fc131fb94cd7f106e60 content_type: application/pdf creator: dernst date_created: 2020-01-20T14:44:10Z date_updated: 2020-07-14T12:47:56Z file_id: '7345' file_name: 2020_JourNeuroscience_Piriya.pdf file_size: 4460781 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 131-142 pmid: 1 publication: Journal of neuroscience publication_identifier: eissn: - '15292401' publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: Microtubule and actin differentially regulate synaptic vesicle cycling to maintain high-frequency neurotransmission tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2020' ... --- _id: '7908' abstract: - lang: eng text: Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses. article_processing_charge: No article_type: original author: - first_name: Han Ying full_name: Wang, Han Ying last_name: Wang - first_name: Kohgaku full_name: Eguchi, Kohgaku id: 2B7846DC-F248-11E8-B48F-1D18A9856A87 last_name: Eguchi orcid: 0000-0002-6170-2546 - first_name: Takayuki full_name: Yamashita, Takayuki last_name: Yamashita - first_name: Tomoyuki full_name: Takahashi, Tomoyuki last_name: Takahashi citation: ama: Wang HY, Eguchi K, Yamashita T, Takahashi T. Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms. Journal of Neuroscience. 2020;40(21):4103-4115. doi:10.1523/JNEUROSCI.2946-19.2020 apa: Wang, H. Y., Eguchi, K., Yamashita, T., & Takahashi, T. (2020). Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms. Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.2946-19.2020 chicago: Wang, Han Ying, Kohgaku Eguchi, Takayuki Yamashita, and Tomoyuki Takahashi. “Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms.” Journal of Neuroscience. Society for Neuroscience, 2020. https://doi.org/10.1523/JNEUROSCI.2946-19.2020. ieee: H. Y. Wang, K. Eguchi, T. Yamashita, and T. Takahashi, “Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms,” Journal of Neuroscience, vol. 40, no. 21. Society for Neuroscience, pp. 4103–4115, 2020. ista: Wang HY, Eguchi K, Yamashita T, Takahashi T. 2020. Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms. Journal of Neuroscience. 40(21), 4103–4115. mla: Wang, Han Ying, et al. “Frequency-Dependent Block of Excitatory Neurotransmission by Isoflurane via Dual Presynaptic Mechanisms.” Journal of Neuroscience, vol. 40, no. 21, Society for Neuroscience, 2020, pp. 4103–15, doi:10.1523/JNEUROSCI.2946-19.2020. short: H.Y. Wang, K. Eguchi, T. Yamashita, T. Takahashi, Journal of Neuroscience 40 (2020) 4103–4115. date_created: 2020-05-31T22:00:48Z date_published: 2020-05-20T00:00:00Z date_updated: 2023-08-21T06:31:25Z day: '20' ddc: - '570' department: - _id: RySh doi: 10.1523/JNEUROSCI.2946-19.2020 external_id: isi: - '000535694700004' file: - access_level: open_access checksum: 6571607ea9036154b67cc78e848a7f7d content_type: application/pdf creator: dernst date_created: 2020-06-02T09:12:16Z date_updated: 2020-07-14T12:48:05Z file_id: '7912' file_name: 2020_JourNeuroscience_Wang.pdf file_size: 3817360 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '21' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 4103-4115 publication: Journal of Neuroscience publication_identifier: eissn: - '15292401' publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2020' ...