--- _id: '10825' abstract: - lang: eng text: In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages. acknowledgement: We are grateful to H. Niwa for Dox regulatable PB vector; G. Charras for EzrinT567D cDNA; K. Jones for tdTomato ESCs, R26-Confetti ESCs, and laboratory assistance; M. Kinoshita for pPB-CAG-H2B-BFP plasmid; P. Humphreys and D. Clements for imaging support; G. Chu, P. Attlesey, and staff for animal husbandry; S. Pallett for laboratory assistance; C. Mulas for critical feedback on the project; T. Boroviak for single-cell RNA-seq; the EMBL Genomics Core Facility for sequencing; and M. Merkel for developing and sharing the original version of the 3D Voronoi code. This work was financially supported by BBSRC ( BB/Moo4023/1 and BB/T007044/1 to K.J.C. and J.N., Alert16 grant BB/R000042 to E.K.P.), Leverhulme Trust ( RPG-2014-080 to K.J.C. and J.N.), European Research Council ( 772798 -CellFateTech to K.J.C., 311637 -MorphoCorDiv and 820188 -NanoMechShape to E.K.P., Starting Grant 851288 to E.H., and 772426 -MeChemGui to K.F.), the Isaac Newton Trust (to E.K.P.), Medical Research Council UK (MRC program award MC_UU_00012/5 to E.K.P.), the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 641639 ( ITN Biopol , H.D.B. and E.K.P.), the Alexander von Humboldt Foundation (Alexander von Humboldt Professorship to K.F.), EMBO ALTF 522-2021 (to P.S.), Centre for Trophoblast Research (Next Generation fellowship to S.A.), and JSPS Overseas Research Fellowships (to A.Y.). The Wellcome-MRC Cambridge Stem Cell Institute receives core funding from Wellcome Trust ( 203151/Z/16/Z ) and MRC ( MC_PC_17230 ). For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. article_processing_charge: No article_type: original author: - first_name: Ayaka full_name: Yanagida, Ayaka last_name: Yanagida - first_name: Elena full_name: Corujo-Simon, Elena last_name: Corujo-Simon - first_name: Christopher K. full_name: Revell, Christopher K. last_name: Revell - first_name: Preeti full_name: Sahu, Preeti id: 55BA52EE-A185-11EA-88FD-18AD3DDC885E last_name: Sahu - first_name: Giuliano G. full_name: Stirparo, Giuliano G. last_name: Stirparo - first_name: Irene M. full_name: Aspalter, Irene M. last_name: Aspalter - first_name: Alex K. full_name: Winkel, Alex K. last_name: Winkel - first_name: Ruby full_name: Peters, Ruby last_name: Peters - first_name: Henry full_name: De Belly, Henry last_name: De Belly - first_name: Davide A.D. full_name: Cassani, Davide A.D. last_name: Cassani - first_name: Sarra full_name: Achouri, Sarra last_name: Achouri - first_name: Raphael full_name: Blumenfeld, Raphael last_name: Blumenfeld - first_name: Kristian full_name: Franze, Kristian last_name: Franze - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Ewa K. full_name: Paluch, Ewa K. last_name: Paluch - first_name: Jennifer full_name: Nichols, Jennifer last_name: Nichols - first_name: Kevin J. full_name: Chalut, Kevin J. last_name: Chalut citation: ama: Yanagida A, Corujo-Simon E, Revell CK, et al. Cell surface fluctuations regulate early embryonic lineage sorting. Cell. 2022;185(5):777-793.e20. doi:10.1016/j.cell.2022.01.022 apa: Yanagida, A., Corujo-Simon, E., Revell, C. K., Sahu, P., Stirparo, G. G., Aspalter, I. M., … Chalut, K. J. (2022). Cell surface fluctuations regulate early embryonic lineage sorting. Cell. Cell Press. https://doi.org/10.1016/j.cell.2022.01.022 chicago: Yanagida, Ayaka, Elena Corujo-Simon, Christopher K. Revell, Preeti Sahu, Giuliano G. Stirparo, Irene M. Aspalter, Alex K. Winkel, et al. “Cell Surface Fluctuations Regulate Early Embryonic Lineage Sorting.” Cell. Cell Press, 2022. https://doi.org/10.1016/j.cell.2022.01.022. ieee: A. Yanagida et al., “Cell surface fluctuations regulate early embryonic lineage sorting,” Cell, vol. 185, no. 5. Cell Press, p. 777–793.e20, 2022. ista: Yanagida A, Corujo-Simon E, Revell CK, Sahu P, Stirparo GG, Aspalter IM, Winkel AK, Peters R, De Belly H, Cassani DAD, Achouri S, Blumenfeld R, Franze K, Hannezo EB, Paluch EK, Nichols J, Chalut KJ. 2022. Cell surface fluctuations regulate early embryonic lineage sorting. Cell. 185(5), 777–793.e20. mla: Yanagida, Ayaka, et al. “Cell Surface Fluctuations Regulate Early Embryonic Lineage Sorting.” Cell, vol. 185, no. 5, Cell Press, 2022, p. 777–793.e20, doi:10.1016/j.cell.2022.01.022. short: A. Yanagida, E. Corujo-Simon, C.K. Revell, P. Sahu, G.G. Stirparo, I.M. Aspalter, A.K. Winkel, R. Peters, H. De Belly, D.A.D. Cassani, S. Achouri, R. Blumenfeld, K. Franze, E.B. Hannezo, E.K. Paluch, J. Nichols, K.J. Chalut, Cell 185 (2022) 777–793.e20. date_created: 2022-03-06T23:01:52Z date_published: 2022-02-22T00:00:00Z date_updated: 2023-08-02T14:43:50Z day: '22' ddc: - '570' department: - _id: EdHa doi: 10.1016/j.cell.2022.01.022 ec_funded: 1 external_id: isi: - '000796293700007' pmid: - '35196500' file: - access_level: open_access checksum: ae305060e8031297771b89dae9e36a29 content_type: application/pdf creator: dernst date_created: 2022-03-07T07:55:23Z date_updated: 2022-03-07T07:55:23Z file_id: '10831' file_name: 2022_Cell_Yanagida.pdf file_size: 8478995 relation: main_file success: 1 file_date_updated: 2022-03-07T07:55:23Z has_accepted_license: '1' intvolume: ' 185' isi: 1 issue: '5' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version page: 777-793.e20 pmid: 1 project: - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Cell surface fluctuations regulate early embryonic lineage sorting tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 185 year: '2022' ... --- _id: '9316' abstract: - lang: eng text: Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We thank Carl Goodrich and the members of the Heisenberg and Hannezo groups, in particular Reka Korei, for help, technical advice, and discussions; and the Bioimaging and zebrafish facilities of the IST Austria for continuous support. This work was supported by the Elise Richter Program of Austrian Science Fund (FWF) to N.I.P. ( V 736-B26 ) and the European Union (European Research Council Advanced Grant 742573 to C.-P.H. and European Research Council Starting Grant 851288 to E.H.). article_processing_charge: No article_type: original author: - first_name: Nicoletta full_name: Petridou, Nicoletta id: 2A003F6C-F248-11E8-B48F-1D18A9856A87 last_name: Petridou orcid: 0000-0002-8451-1195 - first_name: Bernat full_name: Corominas-Murtra, Bernat id: 43BE2298-F248-11E8-B48F-1D18A9856A87 last_name: Corominas-Murtra orcid: 0000-0001-9806-5643 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 citation: ama: Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 2021;184(7):1914-1928.e19. doi:10.1016/j.cell.2021.02.017 apa: Petridou, N., Corominas-Murtra, B., Heisenberg, C.-P. J., & Hannezo, E. B. (2021). Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. Elsevier. https://doi.org/10.1016/j.cell.2021.02.017 chicago: Petridou, Nicoletta, Bernat Corominas-Murtra, Carl-Philipp J Heisenberg, and Edouard B Hannezo. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell. Elsevier, 2021. https://doi.org/10.1016/j.cell.2021.02.017. ieee: N. Petridou, B. Corominas-Murtra, C.-P. J. Heisenberg, and E. B. Hannezo, “Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions,” Cell, vol. 184, no. 7. Elsevier, p. 1914–1928.e19, 2021. ista: Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 184(7), 1914–1928.e19. mla: Petridou, Nicoletta, et al. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell, vol. 184, no. 7, Elsevier, 2021, p. 1914–1928.e19, doi:10.1016/j.cell.2021.02.017. short: N. Petridou, B. Corominas-Murtra, C.-P.J. Heisenberg, E.B. Hannezo, Cell 184 (2021) 1914–1928.e19. date_created: 2021-04-11T22:01:14Z date_published: 2021-04-01T00:00:00Z date_updated: 2023-08-07T14:33:59Z day: '01' ddc: - '570' department: - _id: CaHe - _id: EdHa doi: 10.1016/j.cell.2021.02.017 ec_funded: 1 external_id: isi: - '000636734000022' pmid: - '33730596' file: - access_level: open_access checksum: 1e5295fbd9c2a459173ec45a0e8a7c2e content_type: application/pdf creator: cziletti date_created: 2021-06-08T10:04:10Z date_updated: 2021-06-08T10:04:10Z file_id: '9534' file_name: 2021_Cell_Petridou.pdf file_size: 11405875 relation: main_file success: 1 file_date_updated: 2021-06-08T10:04:10Z has_accepted_license: '1' intvolume: ' 184' isi: 1 issue: '7' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1914-1928.e19 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 2693FD8C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00736 name: Tissue material properties in embryonic development publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/embryonic-tissue-undergoes-phase-transition/ scopus_import: '1' status: public title: Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 184 year: '2021' ... --- _id: '7789' abstract: - lang: eng text: During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, andin vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues. article_processing_charge: No article_type: original author: - first_name: Sophie full_name: Dekoninck, Sophie last_name: Dekoninck - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Alejandro full_name: Sifrim, Alejandro last_name: Sifrim - first_name: Yekaterina A. full_name: Miroshnikova, Yekaterina A. last_name: Miroshnikova - first_name: Mariaceleste full_name: Aragona, Mariaceleste last_name: Aragona - first_name: Milan full_name: Malfait, Milan last_name: Malfait - first_name: Souhir full_name: Gargouri, Souhir last_name: Gargouri - first_name: Charlotte full_name: De Neunheuser, Charlotte last_name: De Neunheuser - first_name: Christine full_name: Dubois, Christine last_name: Dubois - first_name: Thierry full_name: Voet, Thierry last_name: Voet - first_name: Sara A. full_name: Wickström, Sara A. last_name: Wickström - first_name: Benjamin D. full_name: Simons, Benjamin D. last_name: Simons - first_name: Cédric full_name: Blanpain, Cédric last_name: Blanpain citation: ama: Dekoninck S, Hannezo EB, Sifrim A, et al. Defining the design principles of skin epidermis postnatal growth. Cell. 2020;181(3):604-620.e22. doi:10.1016/j.cell.2020.03.015 apa: Dekoninck, S., Hannezo, E. B., Sifrim, A., Miroshnikova, Y. A., Aragona, M., Malfait, M., … Blanpain, C. (2020). Defining the design principles of skin epidermis postnatal growth. Cell. Elsevier. https://doi.org/10.1016/j.cell.2020.03.015 chicago: Dekoninck, Sophie, Edouard B Hannezo, Alejandro Sifrim, Yekaterina A. Miroshnikova, Mariaceleste Aragona, Milan Malfait, Souhir Gargouri, et al. “Defining the Design Principles of Skin Epidermis Postnatal Growth.” Cell. Elsevier, 2020. https://doi.org/10.1016/j.cell.2020.03.015. ieee: S. Dekoninck et al., “Defining the design principles of skin epidermis postnatal growth,” Cell, vol. 181, no. 3. Elsevier, p. 604–620.e22, 2020. ista: Dekoninck S, Hannezo EB, Sifrim A, Miroshnikova YA, Aragona M, Malfait M, Gargouri S, De Neunheuser C, Dubois C, Voet T, Wickström SA, Simons BD, Blanpain C. 2020. Defining the design principles of skin epidermis postnatal growth. Cell. 181(3), 604–620.e22. mla: Dekoninck, Sophie, et al. “Defining the Design Principles of Skin Epidermis Postnatal Growth.” Cell, vol. 181, no. 3, Elsevier, 2020, p. 604–620.e22, doi:10.1016/j.cell.2020.03.015. short: S. Dekoninck, E.B. Hannezo, A. Sifrim, Y.A. Miroshnikova, M. Aragona, M. Malfait, S. Gargouri, C. De Neunheuser, C. Dubois, T. Voet, S.A. Wickström, B.D. Simons, C. Blanpain, Cell 181 (2020) 604–620.e22. date_created: 2020-05-03T22:00:48Z date_published: 2020-04-30T00:00:00Z date_updated: 2023-08-21T06:17:43Z day: '30' ddc: - '570' department: - _id: EdHa doi: 10.1016/j.cell.2020.03.015 external_id: isi: - '000530708400016' pmid: - '32259486' file: - access_level: open_access checksum: e2114902f4e9d75a752e9efb5ae06011 content_type: application/pdf creator: dernst date_created: 2020-05-04T10:20:55Z date_updated: 2020-07-14T12:48:03Z file_id: '7795' file_name: 2020_Cell_Dekoninck.pdf file_size: 17992888 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 181' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '04' oa: 1 oa_version: Published Version page: 604-620.e22 pmid: 1 publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Defining the design principles of skin epidermis postnatal growth tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 181 year: '2020' ... --- _id: '6351' abstract: - lang: eng text: "A process of restorative patterning in plant roots correctly replaces eliminated cells to heal local injuries despite the absence of cell migration, which underpins wound healing in animals. \r\n\r\nPatterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing." acknowledged_ssus: - _id: Bio article_processing_charge: No author: - first_name: Petra full_name: Marhavá, Petra id: 44E59624-F248-11E8-B48F-1D18A9856A87 last_name: Marhavá - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Marhavá P, Hörmayer L, Yoshida S, Marhavý P, Benková E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 2019;177(4):957-969.e13. doi:10.1016/j.cell.2019.04.015 apa: Marhavá, P., Hörmayer, L., Yoshida, S., Marhavý, P., Benková, E., & Friml, J. (2019). Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.015 chicago: Marhavá, Petra, Lukas Hörmayer, Saiko Yoshida, Peter Marhavý, Eva Benková, and Jiří Friml. “Re-Activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.015. ieee: P. Marhavá, L. Hörmayer, S. Yoshida, P. Marhavý, E. Benková, and J. Friml, “Re-activation of stem cell pathways for pattern restoration in plant wound healing,” Cell, vol. 177, no. 4. Elsevier, p. 957–969.e13, 2019. ista: Marhavá P, Hörmayer L, Yoshida S, Marhavý P, Benková E, Friml J. 2019. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 177(4), 957–969.e13. mla: Marhavá, Petra, et al. “Re-Activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing.” Cell, vol. 177, no. 4, Elsevier, 2019, p. 957–969.e13, doi:10.1016/j.cell.2019.04.015. short: P. Marhavá, L. Hörmayer, S. Yoshida, P. Marhavý, E. Benková, J. Friml, Cell 177 (2019) 957–969.e13. date_created: 2019-04-28T21:59:14Z date_published: 2019-05-02T00:00:00Z date_updated: 2024-03-28T23:30:10Z day: '02' ddc: - '570' department: - _id: JiFr - _id: EvBe doi: 10.1016/j.cell.2019.04.015 ec_funded: 1 external_id: isi: - '000466843000015' pmid: - '31051107' file: - access_level: open_access checksum: 4ceba04a96a74f5092ec3ce2c579a0c7 content_type: application/pdf creator: dernst date_created: 2019-05-13T06:12:45Z date_updated: 2020-07-14T12:47:28Z file_id: '6411' file_name: 2019_Cell_Marhava.pdf file_size: 10272032 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '4' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 957-969.e13 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/specialized-plant-cells-regain-stem-cell-features-to-heal-wounds/ record: - id: '9992' relation: dissertation_contains status: public scopus_import: '1' status: public title: Re-activation of stem cell pathways for pattern restoration in plant wound healing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ... --- _id: '6508' abstract: - lang: eng text: Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We would like to thank Pierre Recho, Guillaume Salbreux, and Silvia Grigolon for advice on the theory, Lila Solnica-Krezel for kindly providing us with zebrafish dachsous mutants, members of the Heisenberg and Hannezo groups for fruitful discussions, and the Bioimaging and zebrafish facilities at IST Austria for their continuous support. This project has received funding from the European Union (European Research Council Advanced Grant 742573 to C.P.H.) and from the Austrian Science Fund (FWF) (P 31639 to E.H.). article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 2019;177(6):1463-1479.e18. doi:10.1016/j.cell.2019.04.030 apa: Shamipour, S., Kardos, R., Xue, S., Hof, B., Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.030 chicago: Shamipour, Shayan, Roland Kardos, Shi-lei Xue, Björn Hof, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.030. ieee: S. Shamipour, R. Kardos, S. Xue, B. Hof, E. B. Hannezo, and C.-P. J. Heisenberg, “Bulk actin dynamics drive phase segregation in zebrafish oocytes,” Cell, vol. 177, no. 6. Elsevier, p. 1463–1479.e18, 2019. ista: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. 2019. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 177(6), 1463–1479.e18. mla: Shamipour, Shayan, et al. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell, vol. 177, no. 6, Elsevier, 2019, p. 1463–1479.e18, doi:10.1016/j.cell.2019.04.030. short: S. Shamipour, R. Kardos, S. Xue, B. Hof, E.B. Hannezo, C.-P.J. Heisenberg, Cell 177 (2019) 1463–1479.e18. date_created: 2019-06-02T21:59:12Z date_published: 2019-05-30T00:00:00Z date_updated: 2024-03-28T23:30:39Z day: '30' ddc: - '570' department: - _id: CaHe - _id: EdHa - _id: BjHo doi: 10.1016/j.cell.2019.04.030 ec_funded: 1 external_id: isi: - '000469415100013' pmid: - '31080065' file: - access_level: open_access checksum: aea43726d80e35ce3885073a5f05c3e3 content_type: application/pdf creator: dernst date_created: 2020-10-21T07:22:34Z date_updated: 2020-10-21T07:22:34Z file_id: '8686' file_name: 2019_Cell_Shamipour_accepted.pdf file_size: 3356292 relation: main_file success: 1 file_date_updated: 2020-10-21T07:22:34Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.04.030 month: '05' oa: 1 oa_version: Published Version page: 1463-1479.e18 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-the-cytoplasm-separates-from-the-yolk/ record: - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: Bulk actin dynamics drive phase segregation in zebrafish oocytes type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ...