TY - GEN
AU - Huszár, Kristóf
AU - Rolinek, Michal
ID - 7038
TI - Playful Math - An introduction to mathematical games
ER -
TY - CONF
AB - Representation languages for coalitional games are a key research area in algorithmic game theory. There is an inher-
ent tradeoff between how general a language is, allowing it to capture more elaborate games, and how hard it is computationally to optimize and solve such games. One prominent such language is the simple yet expressive
Weighted Graph Games (WGGs) representation (Deng and Papadimitriou 1994), which maintains knowledge about synergies between agents in the form of an edge weighted graph. We consider the problem of finding the optimal coalition structure in WGGs. The agents in such games are vertices in a graph, and the value of a coalition is the sum of the weights of the edges present between coalition members. The optimal coalition structure is a partition of the agents to coalitions, that maximizes the sum of utilities obtained by the coalitions. We show that finding the optimal coalition structure is not only hard for general graphs, but is also intractable for restricted families such as planar graphs which are amenable for many other combinatorial problems. We then provide algorithms with constant factor approximations for planar, minorfree and bounded degree graphs.
AU - Bachrach, Yoram
AU - Kohli, Pushmeet
AU - Kolmogorov, Vladimir
AU - Zadimoghaddam, Morteza
ID - 2270
TI - Optimal Coalition Structures in Cooperative Graph Games
ER -
TY - CONF
AB - We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) x1...xn is the sum of terms over intervals [i,j] where each term is non-zero only if the substring xi...xj equals a prespecified pattern α. Such CRFs can be naturally applied to many sequence tagging problems.
We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively O(nL), O(nLℓmax) and O(nLmin{|D|,log(ℓmax+1)}) where L is the combined length of input patterns, ℓmax is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively O(nL|D|), O(n|Γ|L2ℓ2max) and O(nL|D|), where |Γ| is the number of input patterns.
In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an O(nL) algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case.
AU - Takhanov, Rustem
AU - Kolmogorov, Vladimir
ID - 2272
IS - 3
T2 - ICML'13 Proceedings of the 30th International Conference on International
TI - Inference algorithms for pattern-based CRFs on sequence data
VL - 28
ER -
TY - GEN
AB - We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.
AU - Vladimir Kolmogorov
ID - 2273
TI - Reweighted message passing revisited
ER -
TY - GEN
AB - Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto'92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs -- so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model, using graphs with high "pebbling complexity" and Merkle hash-trees.
AU - Dziembowski, Stefan
AU - Faust, Sebastian
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
ID - 2274
TI - Proofs of Space
ER -