@inproceedings{916, abstract = {We study the quadratic assignment problem, in computer vision also known as graph matching. Two leading solvers for this problem optimize the Lagrange decomposition duals with sub-gradient and dual ascent (also known as message passing) updates. We explore this direction further and propose several additional Lagrangean relaxations of the graph matching problem along with corresponding algorithms, which are all based on a common dual ascent framework. Our extensive empirical evaluation gives several theoretical insights and suggests a new state-of-the-art anytime solver for the considered problem. Our improvement over state-of-the-art is particularly visible on a new dataset with large-scale sparse problem instances containing more than 500 graph nodes each.}, author = {Swoboda, Paul and Rother, Carsten and Abu Alhaija, Carsten and Kainmueller, Dagmar and Savchynskyy, Bogdan}, isbn = {978-153860457-1}, location = {Honolulu, HA, United States}, pages = {7062--7071}, publisher = {IEEE}, title = {{A study of lagrangean decompositions and dual ascent solvers for graph matching}}, doi = {10.1109/CVPR.2017.747}, volume = {2017}, year = {2017}, } @inproceedings{915, abstract = {We propose a dual decomposition and linear program relaxation of the NP-hard minimum cost multicut problem. Unlike other polyhedral relaxations of the multicut polytope, it is amenable to efficient optimization by message passing. Like other polyhedral relaxations, it can be tightened efficiently by cutting planes. We define an algorithm that alternates between message passing and efficient separation of cycle- and odd-wheel inequalities. This algorithm is more efficient than state-of-the-art algorithms based on linear programming, including algorithms written in the framework of leading commercial software, as we show in experiments with large instances of the problem from applications in computer vision, biomedical image analysis and data mining.}, author = {Swoboda, Paul and Andres, Bjoern}, isbn = {978-153860457-1}, location = {Honolulu, HA, United States}, pages = {4990--4999}, publisher = {IEEE}, title = {{A message passing algorithm for the minimum cost multicut problem}}, doi = {10.1109/CVPR.2017.530}, volume = {2017}, year = {2017}, } @inproceedings{917, abstract = {We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers.}, author = {Swoboda, Paul and Kuske, Jan and Savchynskyy, Bogdan}, isbn = {978-153860457-1}, location = {Honolulu, HA, United States}, pages = {4950--4960}, publisher = {IEEE}, title = {{A dual ascent framework for Lagrangean decomposition of combinatorial problems}}, doi = {10.1109/CVPR.2017.526}, volume = {2017}, year = {2017}, } @inproceedings{274, abstract = {We consider the problem of estimating the partition function Z(β)=∑xexp(−β(H(x)) of a Gibbs distribution with a Hamilton H(⋅), or more precisely the logarithm of the ratio q=lnZ(0)/Z(β). It has been recently shown how to approximate q with high probability assuming the existence of an oracle that produces samples from the Gibbs distribution for a given parameter value in [0,β]. The current best known approach due to Huber [9] uses O(qlnn⋅[lnq+lnlnn+ε−2]) oracle calls on average where ε is the desired accuracy of approximation and H(⋅) is assumed to lie in {0}∪[1,n]. We improve the complexity to O(qlnn⋅ε−2) oracle calls. We also show that the same complexity can be achieved if exact oracles are replaced with approximate sampling oracles that are within O(ε2qlnn) variation distance from exact oracles. Finally, we prove a lower bound of Ω(q⋅ε−2) oracle calls under a natural model of computation.}, author = {Kolmogorov, Vladimir}, booktitle = {Proceedings of the 31st Conference On Learning Theory}, pages = {228--249}, publisher = {ML Research Press}, title = {{A faster approximation algorithm for the Gibbs partition function}}, volume = {75}, year = {2017}, } @misc{5561, abstract = {Graph matching problems as described in "Active Graph Matching for Automatic Joint Segmentation and Annotation of C. Elegans." by Kainmueller, Dagmar and Jug, Florian and Rother, Carsten and Myers, Gene, MICCAI 2014. Problems are in OpenGM2 hdf5 format (see http://hciweb2.iwr.uni-heidelberg.de/opengm/) and a custom text format used by the feature matching solver described in "Feature Correspondence via Graph Matching: Models and Global Optimization." by Lorenzo Torresani, Vladimir Kolmogorov and Carsten Rother, ECCV 2008, code at http://pub.ist.ac.at/~vnk/software/GraphMatching-v1.02.src.zip. }, author = {Kainmueller, Dagmar and Jug, Florian and Rother, Carsten and Meyers, Gene}, keywords = {graph matching, feature matching, QAP, MAP-inference}, publisher = {Institute of Science and Technology Austria}, title = {{Graph matching problems for annotating C. Elegans}}, doi = {10.15479/AT:ISTA:57}, year = {2017}, } @inproceedings{1231, abstract = {We study the time-and memory-complexities of the problem of computing labels of (multiple) randomly selected challenge-nodes in a directed acyclic graph. The w-bit label of a node is the hash of the labels of its parents, and the hash function is modeled as a random oracle. Specific instances of this problem underlie both proofs of space [Dziembowski et al. CRYPTO’15] as well as popular memory-hard functions like scrypt. As our main tool, we introduce the new notion of a probabilistic parallel entangled pebbling game, a new type of combinatorial pebbling game on a graph, which is closely related to the labeling game on the same graph. As a first application of our framework, we prove that for scrypt, when the underlying hash function is invoked n times, the cumulative memory complexity (CMC) (a notion recently introduced by Alwen and Serbinenko (STOC’15) to capture amortized memory-hardness for parallel adversaries) is at least Ω(w · (n/ log(n))2). This bound holds for adversaries that can store many natural functions of the labels (e.g., linear combinations), but still not arbitrary functions thereof. We then introduce and study a combinatorial quantity, and show how a sufficiently small upper bound on it (which we conjecture) extends our CMC bound for scrypt to hold against arbitrary adversaries. We also show that such an upper bound solves the main open problem for proofs-of-space protocols: namely, establishing that the time complexity of computing the label of a random node in a graph on n nodes (given an initial kw-bit state) reduces tightly to the time complexity for black pebbling on the same graph (given an initial k-node pebbling).}, author = {Alwen, Joel F and Chen, Binyi and Kamath Hosdurg, Chethan and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z and Tessaro, Stefano}, location = {Vienna, Austria}, pages = {358 -- 387}, publisher = {Springer}, title = {{On the complexity of scrypt and proofs of space in the parallel random oracle model}}, doi = {10.1007/978-3-662-49896-5_13}, volume = {9666}, year = {2016}, } @article{1353, abstract = {We characterize absorption in finite idempotent algebras by means of Jónsson absorption and cube term blockers. As an application we show that it is decidable whether a given subset is an absorbing subuniverse of an algebra given by the tables of its basic operations.}, author = {Barto, Libor and Kazda, Alexandr}, journal = {International Journal of Algebra and Computation}, number = {5}, pages = {1033 -- 1060}, publisher = {World Scientific Publishing}, title = {{Deciding absorption}}, doi = {10.1142/S0218196716500430}, volume = {26}, year = {2016}, } @article{1377, abstract = {We consider the problem of minimizing the continuous valued total variation subject to different unary terms on trees and propose fast direct algorithms based on dynamic programming to solve these problems. We treat both the convex and the nonconvex case and derive worst-case complexities that are equal to or better than existing methods. We show applications to total variation based two dimensional image processing and computer vision problems based on a Lagrangian decomposition approach. The resulting algorithms are very effcient, offer a high degree of parallelism, and come along with memory requirements which are only in the order of the number of image pixels.}, author = {Kolmogorov, Vladimir and Pock, Thomas and Rolinek, Michal}, journal = {SIAM Journal on Imaging Sciences}, number = {2}, pages = {605 -- 636}, publisher = {Society for Industrial and Applied Mathematics }, title = {{Total variation on a tree}}, doi = {10.1137/15M1010257}, volume = {9}, year = {2016}, } @article{1612, abstract = {We prove that whenever A is a 3-conservative relational structure with only binary and unary relations,then the algebra of polymorphisms of A either has no Taylor operation (i.e.,CSP(A)is NP-complete),or it generates an SD(∧) variety (i.e.,CSP(A)has bounded width).}, author = {Kazda, Alexandr}, journal = {Algebra Universalis}, number = {1}, pages = {75 -- 84}, publisher = {Springer}, title = {{CSP for binary conservative relational structures}}, doi = {10.1007/s00012-015-0358-8}, volume = {75}, year = {2016}, } @inproceedings{1193, abstract = {We consider the recent formulation of the Algorithmic Lovász Local Lemma [1], [2] for finding objects that avoid "bad features", or "flaws". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and "resamples" it using a "resampling oracle" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new "commutativity" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.}, author = {Kolmogorov, Vladimir}, booktitle = {Proceedings - Annual IEEE Symposium on Foundations of Computer Science}, location = {New Brunswick, NJ, USA }, publisher = {IEEE}, title = {{Commutativity in the algorithmic Lovasz local lemma}}, doi = {10.1109/FOCS.2016.88}, volume = {2016-December}, year = {2016}, } @article{1794, abstract = {We consider Conditional random fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) (Formula presented.) is the sum of terms over intervals [i, j] where each term is non-zero only if the substring (Formula presented.) equals a prespecified pattern w. Such CRFs can be naturally applied to many sequence tagging problems. We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively (Formula presented.), (Formula presented.) and (Formula presented.) where L is the combined length of input patterns, (Formula presented.) is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of Ye et al. (NIPS, 2009) whose complexities are respectively (Formula presented.), (Formula presented.) and (Formula presented.), where (Formula presented.) is the number of input patterns. In addition, we give an efficient algorithm for sampling, and revisit the case of MAP with non-positive weights.}, author = {Kolmogorov, Vladimir and Takhanov, Rustem}, journal = {Algorithmica}, number = {1}, pages = {17 -- 46}, publisher = {Springer}, title = {{Inference algorithms for pattern-based CRFs on sequence data}}, doi = {10.1007/s00453-015-0017-7}, volume = {76}, year = {2016}, } @misc{5557, abstract = {Small synthetic discrete tomography problems. Sizes are 32x32, 64z64 and 256x256. Projection angles are 2, 4, and 6. Number of labels are 3 and 5.}, author = {Swoboda, Paul}, keywords = {discrete tomography}, publisher = {Institute of Science and Technology Austria}, title = {{Synthetic discrete tomography problems}}, doi = {10.15479/AT:ISTA:46}, year = {2016}, } @inproceedings{1636, abstract = {Constraint Satisfaction Problem (CSP) is a fundamental algorithmic problem that appears in many areas of Computer Science. It can be equivalently stated as computing a homomorphism R→ΓΓ between two relational structures, e.g. between two directed graphs. Analyzing its complexity has been a prominent research direction, especially for the fixed template CSPs where the right side ΓΓ is fixed and the left side R is unconstrained. Far fewer results are known for the hybrid setting that restricts both sides simultaneously. It assumes that R belongs to a certain class of relational structures (called a structural restriction in this paper). We study which structural restrictions are effective, i.e. there exists a fixed template ΓΓ (from a certain class of languages) for which the problem is tractable when R is restricted, and NP-hard otherwise. We provide a characterization for structural restrictions that are closed under inverse homomorphisms. The criterion is based on the chromatic number of a relational structure defined in this paper; it generalizes the standard chromatic number of a graph. As our main tool, we use the algebraic machinery developed for fixed template CSPs. To apply it to our case, we introduce a new construction called a “lifted language”. We also give a characterization for structural restrictions corresponding to minor-closed families of graphs, extend results to certain Valued CSPs (namely conservative valued languages), and state implications for (valued) CSPs with ordered variables and for the maximum weight independent set problem on some restricted families of graphs.}, author = {Kolmogorov, Vladimir and Rolinek, Michal and Takhanov, Rustem}, booktitle = {26th International Symposium}, isbn = {978-3-662-48970-3}, location = {Nagoya, Japan}, pages = {566 -- 577}, publisher = {Springer Nature}, title = {{Effectiveness of structural restrictions for hybrid CSPs}}, doi = {10.1007/978-3-662-48971-0_48}, volume = {9472}, year = {2015}, } @article{1841, abstract = {We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diffusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. The new family of algorithms can be viewed as a generalization of TRW-S from pairwise to higher-order graphical models. We test SRMP on several real-world problems with promising results.}, author = {Kolmogorov, Vladimir}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, number = {5}, pages = {919 -- 930}, publisher = {IEEE}, title = {{A new look at reweighted message passing}}, doi = {10.1109/TPAMI.2014.2363465}, volume = {37}, year = {2015}, } @inproceedings{1859, abstract = {Structural support vector machines (SSVMs) are amongst the best performing models for structured computer vision tasks, such as semantic image segmentation or human pose estimation. Training SSVMs, however, is computationally costly, because it requires repeated calls to a structured prediction subroutine (called \emph{max-oracle}), which has to solve an optimization problem itself, e.g. a graph cut. In this work, we introduce a new algorithm for SSVM training that is more efficient than earlier techniques when the max-oracle is computationally expensive, as it is frequently the case in computer vision tasks. The main idea is to (i) combine the recent stochastic Block-Coordinate Frank-Wolfe algorithm with efficient hyperplane caching, and (ii) use an automatic selection rule for deciding whether to call the exact max-oracle or to rely on an approximate one based on the cached hyperplanes. We show experimentally that this strategy leads to faster convergence to the optimum with respect to the number of requires oracle calls, and that this translates into faster convergence with respect to the total runtime when the max-oracle is slow compared to the other steps of the algorithm. }, author = {Shah, Neel and Kolmogorov, Vladimir and Lampert, Christoph}, location = {Boston, MA, USA}, pages = {2737 -- 2745}, publisher = {IEEE}, title = {{A multi-plane block-coordinate Frank-Wolfe algorithm for training structural SVMs with a costly max-oracle}}, doi = {10.1109/CVPR.2015.7298890}, year = {2015}, } @article{2271, abstract = {A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. Finite-valued constraint languages contain functions that take on rational costs and general-valued constraint languages contain functions that take on rational or infinite costs. An instance of the problem is specified by a sum of functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a general-valued constraint language Γ, BLP is a decision procedure for Γ if and only if Γ admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ, BLP is a decision procedure if and only if Γ admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees. }, author = {Kolmogorov, Vladimir and Thapper, Johan and Živný, Stanislav}, journal = {SIAM Journal on Computing}, number = {1}, pages = {1 -- 36}, publisher = {SIAM}, title = {{The power of linear programming for general-valued CSPs}}, doi = {10.1137/130945648}, volume = {44}, year = {2015}, } @inproceedings{1637, abstract = {An instance of the Valued Constraint Satisfaction Problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P ≠ NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in {0, ∞} corresponds to ordinary CSPs, where one deals only with the feasibility issue and there is no optimization. This case is the subject of the Algebraic CSP Dichotomy Conjecture predicting for which constraint languages CSPs are tractable (i.e. solvable in polynomial time) and for which NP-hard. The case when all allowed functions take only finite values corresponds to finite-valued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Zivny. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e. the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.}, author = {Kolmogorov, Vladimir and Krokhin, Andrei and Rolinek, Michal}, location = {Berkeley, CA, United States}, pages = {1246 -- 1258}, publisher = {IEEE}, title = {{The complexity of general-valued CSPs}}, doi = {10.1109/FOCS.2015.80}, year = {2015}, } @inproceedings{1675, abstract = {Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto’92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system. In this work, we put forward an alternative concept for PoWs - so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model (with one additional mild assumption required for the proof to go through), using graphs with high “pebbling complexity” and Merkle hash-trees. We discuss some applications, including follow-up work where a decentralized digital currency scheme called Spacecoin is constructed that uses PoS (instead of wasteful PoW like in Bitcoin) to prevent double spending. The main technical contribution of this work is the construction of (directed, loop-free) graphs on N vertices with in-degree O(log logN) such that even if one places Θ(N) pebbles on the nodes of the graph, there’s a constant fraction of nodes that needs Θ(N) steps to be pebbled (where in every step one can put a pebble on a node if all its parents have a pebble).}, author = {Dziembowski, Stefan and Faust, Sebastian and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z}, booktitle = {35th Annual Cryptology Conference}, isbn = {9783662479995}, issn = {0302-9743}, location = {Santa Barbara, CA, United States}, pages = {585 -- 605}, publisher = {Springer}, title = {{Proofs of space}}, doi = {10.1007/978-3-662-48000-7_29}, volume = {9216}, year = {2015}, } @inproceedings{2275, abstract = {Energies with high-order non-submodular interactions have been shown to be very useful in vision due to their high modeling power. Optimization of such energies, however, is generally NP-hard. A naive approach that works for small problem instances is exhaustive search, that is, enumeration of all possible labelings of the underlying graph. We propose a general minimization approach for large graphs based on enumeration of labelings of certain small patches. This partial enumeration technique reduces complex high-order energy formulations to pairwise Constraint Satisfaction Problems with unary costs (uCSP), which can be efficiently solved using standard methods like TRW-S. Our approach outperforms a number of existing state-of-the-art algorithms on well known difficult problems (e.g. curvature regularization, stereo, deconvolution); it gives near global minimum and better speed. Our main application of interest is curvature regularization. In the context of segmentation, our partial enumeration technique allows to evaluate curvature directly on small patches using a novel integral geometry approach. }, author = {Olsson, Carl and Ulen, Johannes and Boykov, Yuri and Kolmogorov, Vladimir}, location = {Sydney, Australia}, pages = {2936 -- 2943}, publisher = {IEEE}, title = {{Partial enumeration and curvature regularization}}, doi = {10.1109/ICCV.2013.365}, year = {2014}, } @techreport{7038, author = {Huszár, Kristóf and Rolinek, Michal}, pages = {5}, publisher = {IST Austria}, title = {{Playful Math - An introduction to mathematical games}}, year = {2014}, }