@misc{9860, author = {Greenwood, Jenny and Milutinovic, Barbara and Peuß, Robert and Behrens, Sarah and Essar, Daniela and Rosenstiel, Philip and Schulenburg, Hinrich and Kurtz, Joachim}, publisher = {Springer Nature}, title = {{Additional file 5: Table S3. of Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae}}, doi = {10.6084/m9.figshare.c.3756974_d5.v1}, year = {2017}, } @article{914, abstract = {Infections with potentially lethal pathogens may negatively affect an individual’s lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect.}, author = {Giehr, Julia and Grasse, Anna V and Cremer, Sylvia and Heinze, Jürgen and Schrempf, Alexandra}, issn = {20545703}, journal = {Royal Society Open Science}, number = {7}, publisher = {Royal Society, The}, title = {{Ant queens increase their reproductive efforts after pathogen infection}}, doi = {10.1098/rsos.170547}, volume = {4}, year = {2017}, } @misc{9853, abstract = {Egg laying rates and infection loads of C. obscurior queens}, author = {Giehr, Julia and Grasse, Anna V and Cremer, Sylvia and Heinze, Jürgen and Schrempf, Alexandra}, publisher = {The Royal Society}, title = {{Raw data from ant queens increase their reproductive efforts after pathogen infection}}, doi = {10.6084/m9.figshare.5117788.v1}, year = {2017}, } @article{734, abstract = {Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality.}, author = {Kennedy, Patrick and Baron, Gemma and Qiu, Bitao and Freitak, Dalial and Helantera, Heikki and Hunt, Edmund and Manfredini, Fabio and O'Shea Wheller, Thomas and Patalano, Solenn and Pull, Christopher and Sasaki, Takao and Taylor, Daisy and Wyatt, Christopher and Sumner, Seirian}, issn = {01695347}, journal = {Trends in Ecology and Evolution}, number = {11}, pages = {861 -- 872}, publisher = {Cell Press}, title = {{Deconstructing superorganisms and societies to address big questions in biology}}, doi = {10.1016/j.tree.2017.08.004}, volume = {32}, year = {2017}, } @phdthesis{819, abstract = {Contagious diseases must transmit from infectious to susceptible hosts in order to reproduce. Whilst vectored pathogens can rely on intermediaries to find new hosts for them, many infectious pathogens require close contact or direct interaction between hosts for transmission. Hence, this means that conspecifics are often the main source of infection for most animals and so, in theory, animals should avoid conspecifics to reduce their risk of infection. Of course, in reality animals must interact with one another, as a bare minimum, to mate. However, being social provides many additional benefits and group living has become a taxonomically diverse and widespread trait. How then do social animals overcome the issue of increased disease? Over the last few decades, the social insects (ants, termites and some bees and wasps) have become a model system for studying disease in social animals. On paper, a social insect colony should be particularly susceptible to disease, given that they often contain thousands of potential hosts that are closely related and frequently interact, as well as exhibiting stable environmental conditions that encourage microbial growth. Yet, disease outbreaks appear to be rare and attempts to eradicate pest species using pathogens have failed time and again. Evolutionary biologists investigating this observation have discovered that the reduced disease susceptibility in social insects is, in part, due to collectively performed disease defences of the workers. These defences act like a “social immune system” for the colony, resulting in a per capita decrease in disease, termed social immunity. Our understanding of social immunity, and its importance in relation to the immunological defences of each insect, continues to grow, but there remain many open questions. In this thesis I have studied disease defence in garden ants. In the first data chapter, I use the invasive garden ant, Lasius neglectus, to investigate how colonies mitigate lethal infections and prevent them from spreading systemically. I find that ants have evolved ‘destructive disinfection’ – a behaviour that uses endogenously produced acidic poison to kill diseased brood and to prevent the pathogen from replicating. In the second experimental chapter, I continue to study the use of poison in invasive garden ant colonies, finding that it is sprayed prophylactically within the nest. However, this spraying has negative effects on developing pupae when they have had their cocoons artificially removed. Hence, I suggest that acidic nest sanitation may be maintaining larval cocoon spinning in this species. In the next experimental chapter, I investigated how colony founding black garden ant queens (Lasius niger) prevent disease when a co-foundress dies. I show that ant queens prophylactically perform undertaking behaviours, similar to those performed by the workers in mature nests. When a co-foundress was infected, these undertaking behaviours improved the survival of the healthy queen. In the final data chapter, I explored how immunocompetence (measured as antifungal activity) changes as incipient black garden ant colonies grow and mature, from the solitary queen phase to colonies with several hundred workers. Queen and worker antifungal activity varied throughout this time period, but despite social immunity, did not decrease as colonies matured. In addition to the above data chapters, this thesis includes two co-authored reviews. In the first, we examine the state of the art in the field of social immunity and how it might develop in the future. In the second, we identify several challenges and open questions in the study of disease defence in animals. We highlight how social insects offer a unique model to tackle some of these problems, as disease defence can be studied from the cell to the society. }, author = {Pull, Christopher}, issn = {2663-337X}, pages = {122}, publisher = {Institute of Science and Technology Austria}, title = {{Disease defence in garden ants}}, doi = {10.15479/AT:ISTA:th_861}, year = {2017}, } @article{732, abstract = {Background: Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Results: Using Lasius Niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. Conclusions: We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.}, author = {Pull, Christopher and Cremer, Sylvia}, issn = {14712148}, journal = {BMC Evolutionary Biology}, number = {1}, publisher = {BioMed Central}, title = {{Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour}}, doi = {10.1186/s12862-017-1062-4}, volume = {17}, year = {2017}, } @article{459, abstract = {The social insects bees, wasps, ants, and termites are species-rich, occur in many habitats, and often constitute a large part of the biomass. Many are also invasive, including species of termites, the red imported fire ant, and the Argentine ant. While invasive social insects have been a problem in Southern Europe for some time, Central Europa was free of invasive ant species until recently because most ants are adapted to warmer climates. Only in the 1990s, did Lasius neglectus, a close relative of the common black garden ant, arrive in Germany. First described in 1990 based on individuals collected in Budapest, the species has since been detected for example in France, Germany, Spain, England, and Kyrgyzstan. The species is spread with soil during construction work or plantings, and L. neglectus therefore is often found in parks and botanical gardens. Another invasive ant now spreading in southern Germany is Formica fuscocinerea, which occurs along rivers, including in the sandy floodplains of the river Isar. As is typical of pioneer species, F. fuscocinerea quickly becomes extremely abundant and therefore causes problems for example on playgrounds in Munich. All invasive ant species are characterized by cooperation across nests, leading to strongly interconnected, very large super-colonies. The resulting dominance results in the extinction of native ant species as well as other arthropod species and thus in the reduction of biodiversity.}, author = {Cremer, Sylvia}, issn = {2366-2875}, journal = {Rundgespräche Forum Ökologie}, pages = {105 -- 116}, publisher = {Verlag Dr. Friedrich Pfeil}, title = {{Invasive Ameisen in Europa: Wie sie sich ausbreiten und die heimische Fauna verändern}}, volume = {46}, year = {2017}, } @article{558, abstract = {Immune specificity is the degree to which a host’s immune system discriminates among various pathogens or antigenic variants. Vertebrate immune memory is highly specific due to antibody responses. On the other hand, some invertebrates show immune priming, i.e. improved survival after secondary exposure to a previously encountered pathogen. Until now, specificity of priming has only been demonstrated via the septic infection route or when live pathogens were used for priming. Therefore, we tested for specificity in the oral priming route in the red flour beetle, Tribolium castaneum. For priming, we used pathogen-free supernatants derived from three different strains of the entomopathogen, Bacillus thuringiensis, which express different Cry toxin variants known for their toxicity against this beetle. Subsequent exposure to the infective spores showed that oral priming was specific for two naturally occurring strains, while a third engineered strain did not induce any priming effect. Our data demonstrate that oral immune priming with a non-infectious bacterial agent can be specific, but the priming effect is not universal across all bacterial strains.}, author = {Futo, Momir and Sell, Marie and Kutzer, Megan and Kurtz, Joachim}, issn = {1744-9561}, journal = {Biology Letters}, number = {12}, publisher = {The Royal Society}, title = {{Specificity of oral immune priming in the red flour beetle Tribolium castaneum}}, doi = {10.1098/rsbl.2017.0632}, volume = {13}, year = {2017}, } @article{1184, abstract = {Across multicellular organisms, the costs of reproduction and self-maintenance result in a life history trade-off between fecundity and longevity. Queens of perennial social Hymenoptera are both highly fertile and long-lived, and thus, this fundamental trade-off is lacking. Whether social insect males similarly evade the fecundity/longevity trade-off remains largely unstudied. Wingless males of the ant genus Cardiocondyla stay in their natal colonies throughout their relatively long lives and mate with multiple female sexuals. Here, we show that Cardiocondyla obscurior males that were allowed to mate with large numbers of female sexuals had a shortened life span compared to males that mated at a low frequency or virgin males. Although frequent mating negatively affects longevity, males clearly benefit from a “live fast, die young strategy” by inseminating as many female sexuals as possible at a cost to their own survival.}, author = {Metzler, Sina and Heinze, Jürgen and Schrempf, Alexandra}, journal = {Ecology and Evolution}, number = {24}, pages = {8903 -- 8906}, publisher = {Wiley-Blackwell}, title = {{Mating and longevity in ant males}}, doi = {10.1002/ece3.2474}, volume = {6}, year = {2016}, } @article{1202, author = {Milutinovic, Barbara and Peuß, Robert and Ferro, Kevin and Kurtz, Joachim}, journal = {Zoology }, number = {4}, pages = {254 -- 261}, publisher = {Elsevier}, title = {{Immune priming in arthropods: an update focusing on the red flour beetle}}, doi = {10.1016/j.zool.2016.03.006}, volume = {119}, year = {2016}, } @article{1255, abstract = {Down syndrome cell adhesion molecule 1 (Dscam1) has widereaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives.}, author = {Peuß, Robert and Wensing, Kristina and Woestmann, Luisa and Eggert, Hendrik and Milutinovic, Barbara and Sroka, Marlene and Scharsack, Jörn and Kurtz, Joachim and Armitage, Sophie}, journal = {Royal Society Open Science}, number = {4}, publisher = {Royal Society, The}, title = {{Down syndrome cell adhesion molecule 1: Testing for a role in insect immunity, behaviour and reproduction}}, doi = {10.1098/rsos.160138}, volume = {3}, year = {2016}, } @article{1268, author = {Milutinovic, Barbara and Kurtz, Joachim}, journal = {Seminars in Immunology}, number = {4}, pages = {328 -- 342}, publisher = {Academic Press}, title = {{Immune memory in invertebrates}}, doi = {10.1016/j.smim.2016.05.004}, volume = {28}, year = {2016}, } @article{1431, abstract = {The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms are usually spatially distinct, but at Răscruci in Romania both forms occur on the same site (syntopically). We examined the genetic differentiation between the two forms using eight microsatellite markers, and compared with a nearby hygric site, Şardu. Our results showed that while the two forms are strongly differentiated at Răscruci, it is the xeric form there that is most similar to the hygric form at Şardu, and Bayesian clustering algorithms suggest that these two populations have exchanged genes relatively recently. We found strong evidence for population substructuring, caused by high within host ant nest relatedness, indicating very limited dispersal of most ovipositing females, but not association with particular host ant species. Our results are consistent with the results of larger scale phylogeographic studies that suggest that the two forms represent local ecotypes specialising on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow.}, author = {Tartally, András and Kelager, Andreas and Fürst, Matthias and Nash, David}, journal = {PeerJ}, number = {3}, publisher = {PeerJ}, title = {{Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon}}, doi = {10.7717/peerj.1865}, volume = {2016}, year = {2016}, } @misc{9720, abstract = {Summary: Declining populations of bee pollinators are a cause of concern, with major repercussions for biodiversity loss and food security. RNA viruses associated with honeybees represent a potential threat to other insect pollinators, but the extent of this threat is poorly understood. This study aims to attain a detailed understanding of the current and ongoing risk of emerging infectious disease (EID) transmission between managed and wild pollinator species across a wide range of RNA viruses. Within a structured large-scale national survey across 26 independent sites, we quantify the prevalence and pathogen loads of multiple RNA viruses in co-occurring managed honeybee (Apis mellifera) and wild bumblebee (Bombus spp.) populations. We then construct models that compare virus prevalence between wild and managed pollinators. Multiple RNA viruses associated with honeybees are widespread in sympatric wild bumblebee populations. Virus prevalence in honeybees is a significant predictor of virus prevalence in bumblebees, but we remain cautious in speculating over the principle direction of pathogen transmission. We demonstrate species-specific differences in prevalence, indicating significant variation in disease susceptibility or tolerance. Pathogen loads within individual bumblebees may be high and in the case of at least one RNA virus, prevalence is higher in wild bumblebees than in managed honeybee populations. Our findings indicate widespread transmission of RNA viruses between managed and wild bee pollinators, pointing to an interconnected network of potential disease pressures within and among pollinator species. In the context of the biodiversity crisis, our study emphasizes the importance of targeting a wide range of pathogens and defining host associations when considering potential drivers of population decline.}, author = {Mcmahon, Dino and Fürst, Matthias and Caspar, Jesicca and Theodorou, Panagiotis and Brown, Mark and Paxton, Robert}, publisher = {Dryad}, title = {{Data from: A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees}}, doi = {10.5061/dryad.4b565}, year = {2016}, } @article{1262, abstract = {Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo. The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.}, author = {Mcmahon, Dino and Natsopoulou, Myrsini and Doublet, Vincent and Fürst, Matthias and Weging, Silvio and Brown, Mark and Gogol Döring, Andreas and Paxton, Robert}, journal = {Proceedings of the Royal Society of London Series B Biological Sciences}, number = {1833}, publisher = {Royal Society, The}, title = {{Elevated virulence of an emerging viral genotype as a driver of honeybee loss}}, doi = {10.1098/rspb.2016.0811}, volume = {283}, year = {2016}, } @misc{9704, abstract = {Emerging infectious diseases (EIDs) have contributed significantly to the current biodiversity crisis, leading to widespread epidemics and population loss. Owing to genetic variation in pathogen virulence, a complete understanding of species decline requires the accurate identification and characterization of EIDs. We explore this issue in the Western honeybee, where increasing mortality of populations in the Northern Hemisphere has caused major concern. Specifically, we investigate the importance of genetic identity of the main suspect in mortality, deformed wing virus (DWV), in driving honeybee loss. Using laboratory experiments and a systematic field survey, we demonstrate that an emerging DWV genotype (DWV-B) is more virulent than the established DWV genotype (DWV-A) and is widespread in the landscape. Furthermore, we show in a simple model that colonies infected with DWV-B collapse sooner than colonies infected with DWV-A. We also identify potential for rapid DWV evolution by revealing extensive genome-wide recombination in vivo. The emergence of DWV-B in naive honeybee populations, including via recombination with DWV-A, could be of significant ecological and economic importance. Our findings emphasize that knowledge of pathogen genetic identity and diversity is critical to understanding drivers of species decline.}, author = {Mcmahon, Dino and Natsopoulou, Myrsini and Doublet, Vincent and Fürst, Matthias and Weging, Silvio and Brown, Mark and Gogol Döring, Andreas and Paxton, Robert}, publisher = {Dryad}, title = {{Data from: Elevated virulence of an emerging viral genotype as a driver of honeybee loss}}, doi = {10.5061/dryad.cq7t1}, year = {2016}, } @article{1551, abstract = {Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins.We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system.}, author = {El Masri, Leila and Branca, Antoine and Sheppard, Anna and Papkou, Andrei and Laehnemann, David and Guenther, Patrick and Prahl, Swantje and Saebelfeld, Manja and Hollensteiner, Jacqueline and Liesegang, Heiko and Brzuszkiewicz, Elzbieta and Daniel, Rolf and Michiels, Nico and Schulte, Rebecca and Kurtz, Joachim and Rosenstiel, Philip and Telschow, Arndt and Bornberg Bauer, Erich and Schulenburg, Hinrich}, journal = {PLoS Biology}, number = {6}, pages = {1 -- 30}, publisher = {Public Library of Science}, title = {{Host–pathogen coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes}}, doi = {10.1371/journal.pbio.1002169}, volume = {13}, year = {2015}, } @article{1548, abstract = {Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver- derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen.}, author = {Milutinovic, Barbara and Höfling, Christina and Futo, Momir and Scharsack, Jörn and Kurtz, Joachim}, journal = {Applied and Environmental Microbiology}, number = {23}, pages = {8135 -- 8144}, publisher = {American Society for Microbiology}, title = {{Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination}}, doi = {10.1128/AEM.02051-15}, volume = {81}, year = {2015}, } @article{1831, abstract = {This paper introduces a theme issue presenting the latest developments in research on the impacts of sociality on health and fitness. The articles that follow cover research on societies ranging from insects to humans. Variation in measures of fitness (i.e. survival and reproduction) has been linked to various aspects of sociality in humans and animals alike, and variability in individual health and condition has been recognized as a key mediator of these relationships. Viewed from a broad evolutionary perspective, the evolutionary transitions from a solitary lifestyle to group living have resulted in several new health-related costs and benefits of sociality. Social transmission of parasites within groups represents a major cost of group living, but some behavioural mechanisms, such as grooming, have evolved repeatedly to reduce this cost. Group living also has created novel costs in terms of altered susceptibility to infectious and non-infectious disease as a result of the unavoidable physiological consequences of social competition and integration, which are partly alleviated by social buffering in some vertebrates. Here, we define the relevant aspects of sociality, summarize their health-related costs and benefits, and discuss possible fitness measures in different study systems. Given the pervasive effects of social factors on health and fitness, we propose a synthesis of existing conceptual approaches in disease ecology, ecological immunology and behavioural neurosciences by adding sociality as a key factor, with the goal to generate a broader framework for organismal integration of health-related research.}, author = {Kappeler, Peter and Cremer, Sylvia and Nunn, Charles}, journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences}, number = {1669}, publisher = {Royal Society}, title = {{Sociality and health: Impacts of sociality on disease susceptibility and transmission in animal and human societies}}, doi = {10.1098/rstb.2014.0116}, volume = {370}, year = {2015}, } @article{1850, abstract = {Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels.}, author = {Novak, Sebastian and Cremer, Sylvia}, journal = {Journal of Theoretical Biology}, number = {5}, pages = {54 -- 64}, publisher = {Elsevier}, title = {{Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates}}, doi = {10.1016/j.jtbi.2015.02.018}, volume = {372}, year = {2015}, }