--- _id: '9906' abstract: - lang: eng text: Endometriosis is a common gynecological disorder characterized by ectopic growth of endometrium outside the uterus and is associated with chronic pain and infertility. We investigated the role of the long intergenic noncoding RNA 01133 (LINC01133) in endometriosis, an lncRNA that has been implicated in several types of cancer. We found that LINC01133 is upregulated in ectopic endometriotic lesions. As expression appeared higher in the epithelial endometrial layer, we performed a siRNA knockdown of LINC01133 in an endometriosis epithelial cell line. Phenotypic assays indicated that LINC01133 may promote proliferation and suppress cellular migration, and affect the cytoskeleton and morphology of the cells. Gene ontology analysis of differentially expressed genes indicated that cell proliferation and migration pathways were affected in line with the observed phenotype. We validated upregulation of p21 and downregulation of Cyclin A at the protein level, which together with the quantification of the DNA content using fluorescence-activated cell sorting (FACS) analysis indicated that the observed effects on cellular proliferation may be due to changes in cell cycle. Further, we found testis-specific protein kinase 1 (TESK1) kinase upregulation corresponding with phosphorylation and inactivation of actin severing protein Cofilin, which could explain changes in the cytoskeleton and cellular migration. These results indicate that endometriosis is associated with LINC01133 upregulation, which may affect pathogenesis via the cellular proliferation and migration pathways. acknowledgement: "Open access funding provided by Medical University of Vienna. The authors would like to thank all the participants and health professionals involved in the present study. We want to thank our technical assistants Barbara Widmar and Matthias Witzmann-Stern for their diligent work and constant assistance. We would like to thank Simon Hippenmeyer for access to\r\nbioinformatic infrastructure and resources." article_number: '8385' article_processing_charge: Yes article_type: original author: - first_name: Iveta full_name: Yotova, Iveta last_name: Yotova - first_name: Quanah J. full_name: Hudson, Quanah J. last_name: Hudson - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Katharina full_name: Proestling, Katharina last_name: Proestling - first_name: Isabella full_name: Haslinger, Isabella last_name: Haslinger - first_name: Lorenz full_name: Kuessel, Lorenz last_name: Kuessel - first_name: Alexandra full_name: Perricos, Alexandra last_name: Perricos - first_name: Heinrich full_name: Husslein, Heinrich last_name: Husslein - first_name: René full_name: Wenzl, René last_name: Wenzl citation: ama: Yotova I, Hudson QJ, Pauler F, et al. LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line. International Journal of Molecular Sciences. 2021;22(16). doi:10.3390/ijms22168385 apa: Yotova, I., Hudson, Q. J., Pauler, F., Proestling, K., Haslinger, I., Kuessel, L., … Wenzl, R. (2021). LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms22168385 chicago: Yotova, Iveta, Quanah J. Hudson, Florian Pauler, Katharina Proestling, Isabella Haslinger, Lorenz Kuessel, Alexandra Perricos, Heinrich Husslein, and René Wenzl. “LINC01133 Inhibits Invasion and Promotes Proliferation in an Endometriosis Epithelial Cell Line.” International Journal of Molecular Sciences. MDPI, 2021. https://doi.org/10.3390/ijms22168385. ieee: I. Yotova et al., “LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line,” International Journal of Molecular Sciences, vol. 22, no. 16. MDPI, 2021. ista: Yotova I, Hudson QJ, Pauler F, Proestling K, Haslinger I, Kuessel L, Perricos A, Husslein H, Wenzl R. 2021. LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line. International Journal of Molecular Sciences. 22(16), 8385. mla: Yotova, Iveta, et al. “LINC01133 Inhibits Invasion and Promotes Proliferation in an Endometriosis Epithelial Cell Line.” International Journal of Molecular Sciences, vol. 22, no. 16, 8385, MDPI, 2021, doi:10.3390/ijms22168385. short: I. Yotova, Q.J. Hudson, F. Pauler, K. Proestling, I. Haslinger, L. Kuessel, A. Perricos, H. Husslein, R. Wenzl, International Journal of Molecular Sciences 22 (2021). date_created: 2021-08-15T22:01:27Z date_published: 2021-08-04T00:00:00Z date_updated: 2023-08-11T10:34:13Z day: '04' ddc: - '570' department: - _id: SiHi doi: 10.3390/ijms22168385 external_id: isi: - '000689147400001' file: - access_level: open_access checksum: be7f0042607ca60549cb27513c19c6af content_type: application/pdf creator: asandaue date_created: 2021-08-16T09:29:17Z date_updated: 2021-08-16T09:29:17Z file_id: '9922' file_name: 2021_InternationalJournalOfMolecularSciences_Yotova.pdf file_size: 2646018 relation: main_file success: 1 file_date_updated: 2021-08-16T09:29:17Z has_accepted_license: '1' intvolume: ' 22' isi: 1 issue: '16' language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_identifier: eissn: - '14220067' issn: - '16616596' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 22 year: '2021' ... --- _id: '9073' abstract: - lang: eng text: The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention. acknowledgement: Work in the I.L.H.-O. laboratory was supported by European Research Council Grant ERC-2015-CoG 681577 and German Research Foundation Ha 4466/10-1, Ha4466/11-1, Ha4466/12-1, SPP 1665, and SFB 936B5. Work in the S.J.B.B. laboratory was supported by Biotechnology and Biological Sciences Research Council BB/P003796/1, Medical Research Council MR/K004387/1 and MR/T033320/1, Wellcome Trust 215199/Z/19/Z and 102386/Z/13/Z, and John Fell Fund. Work in the S.H. laboratory was supported by European Research Council Grants ERC-2016-CoG 725780 LinPro and FWF SFB F78. This work was supported by National Institutes of Health Grant NIMH 1R01MH110553 to N.V.D.M.G. Work in the J.A.C. laboratory was supported by the Ludwig Family Foundation, Simons Foundation SFARI Research Award, and National Institutes of Health/National Institute of Mental Health R01 MH102365 and R01MH113852. The B.V. laboratory was supported by Whitehall Foundation 2017-12-73, National Science Foundation 1736028, National Institutes of Health, National Institute of General Medical Sciences R01GM134363-01, and Halıcıoğlu Data Science Institute Fellowship. This work was supported by the University of California San Diego School of Medicine. article_processing_charge: No article_type: original author: - first_name: Ileana L. full_name: Hanganu-Opatz, Ileana L. last_name: Hanganu-Opatz - first_name: Simon J. B. full_name: Butt, Simon J. B. last_name: Butt - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Natalia V. full_name: De Marco García, Natalia V. last_name: De Marco García - first_name: Jessica A. full_name: Cardin, Jessica A. last_name: Cardin - first_name: Bradley full_name: Voytek, Bradley last_name: Voytek - first_name: Alysson R. full_name: Muotri, Alysson R. last_name: Muotri citation: ama: Hanganu-Opatz IL, Butt SJB, Hippenmeyer S, et al. The logic of developing neocortical circuits in health and disease. The Journal of Neuroscience. 2021;41(5):813-822. doi:10.1523/jneurosci.1655-20.2020 apa: Hanganu-Opatz, I. L., Butt, S. J. B., Hippenmeyer, S., De Marco García, N. V., Cardin, J. A., Voytek, B., & Muotri, A. R. (2021). The logic of developing neocortical circuits in health and disease. The Journal of Neuroscience. Society for Neuroscience. https://doi.org/10.1523/jneurosci.1655-20.2020 chicago: Hanganu-Opatz, Ileana L., Simon J. B. Butt, Simon Hippenmeyer, Natalia V. De Marco García, Jessica A. Cardin, Bradley Voytek, and Alysson R. Muotri. “The Logic of Developing Neocortical Circuits in Health and Disease.” The Journal of Neuroscience. Society for Neuroscience, 2021. https://doi.org/10.1523/jneurosci.1655-20.2020. ieee: I. L. Hanganu-Opatz et al., “The logic of developing neocortical circuits in health and disease,” The Journal of Neuroscience, vol. 41, no. 5. Society for Neuroscience, pp. 813–822, 2021. ista: Hanganu-Opatz IL, Butt SJB, Hippenmeyer S, De Marco García NV, Cardin JA, Voytek B, Muotri AR. 2021. The logic of developing neocortical circuits in health and disease. The Journal of Neuroscience. 41(5), 813–822. mla: Hanganu-Opatz, Ileana L., et al. “The Logic of Developing Neocortical Circuits in Health and Disease.” The Journal of Neuroscience, vol. 41, no. 5, Society for Neuroscience, 2021, pp. 813–22, doi:10.1523/jneurosci.1655-20.2020. short: I.L. Hanganu-Opatz, S.J.B. Butt, S. Hippenmeyer, N.V. De Marco García, J.A. Cardin, B. Voytek, A.R. Muotri, The Journal of Neuroscience 41 (2021) 813–822. date_created: 2021-02-03T12:23:51Z date_published: 2021-02-03T00:00:00Z date_updated: 2023-09-05T14:03:17Z day: '03' ddc: - '570' department: - _id: SiHi doi: 10.1523/jneurosci.1655-20.2020 ec_funded: 1 external_id: isi: - '000616763400002' pmid: - '33431633' file: - access_level: open_access checksum: 578fd7ed1a0aef74bce61bea2d987b33 content_type: application/pdf creator: dernst date_created: 2022-05-27T06:59:55Z date_updated: 2022-05-27T06:59:55Z file_id: '11414' file_name: 2021_JourNeuroscience_Hanganu.pdf file_size: 1031150 relation: main_file success: 1 file_date_updated: 2022-05-27T06:59:55Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '5' keyword: - General Neuroscience language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 813-822 pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression publication: The Journal of Neuroscience publication_identifier: eissn: - 1529-2401 issn: - 0270-6474 publication_status: published publisher: Society for Neuroscience quality_controlled: '1' scopus_import: '1' status: public title: The logic of developing neocortical circuits in health and disease type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 41 year: '2021' ... --- _id: '9793' abstract: - lang: eng text: Astrocytes extensively infiltrate the neuropil to regulate critical aspects of synaptic development and function. This process is regulated by transcellular interactions between astrocytes and neurons via cell adhesion molecules. How astrocytes coordinate developmental processes among one another to parse out the synaptic neuropil and form non-overlapping territories is unknown. Here we identify a molecular mechanism regulating astrocyte-astrocyte interactions during development to coordinate astrocyte morphogenesis and gap junction coupling. We show that hepaCAM, a disease-linked, astrocyte-enriched cell adhesion molecule, regulates astrocyte competition for territory and morphological complexity in the developing mouse cortex. Furthermore, conditional deletion of Hepacam from developing astrocytes significantly impairs gap junction coupling between astrocytes and disrupts the balance between synaptic excitation and inhibition. Mutations in HEPACAM cause megalencephalic leukoencephalopathy with subcortical cysts in humans. Therefore, our findings suggest that disruption of astrocyte self-organization mechanisms could be an underlying cause of neural pathology. acknowledgement: This work was supported by the National Institutes of Health (R01 DA047258 and R01 NS102237 to C.E., F32 NS100392 to K.T.B.) and the Holland-Trice Brain Research Award (to C.E.). K.T.B. was supported by postdoctoral fellowships from the Foerster-Bernstein Family and The Hartwell Foundation. The Hippenmeyer lab was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovations program (725780 LinPro) to S.H. R.E. was supported by Ministerio de Ciencia y Tecnología (RTI2018-093493-B-I00). We thank the Duke Light Microscopy Core Facility, the Duke Transgenic Mouse Facility, Dr. U. Schulte for assistance with proteomic experiments, and Dr. D. Silver for critical review of the manuscript. Cartoon elements of figure panels were created using BioRender.com. article_processing_charge: No article_type: original author: - first_name: Katherine T. full_name: Baldwin, Katherine T. last_name: Baldwin - first_name: Christabel X. full_name: Tan, Christabel X. last_name: Tan - first_name: Samuel T. full_name: Strader, Samuel T. last_name: Strader - first_name: Changyu full_name: Jiang, Changyu last_name: Jiang - first_name: Justin T. full_name: Savage, Justin T. last_name: Savage - first_name: Xabier full_name: Elorza-Vidal, Xabier last_name: Elorza-Vidal - first_name: Ximena full_name: Contreras, Ximena id: 475990FE-F248-11E8-B48F-1D18A9856A87 last_name: Contreras - first_name: Thomas full_name: Rülicke, Thomas last_name: Rülicke - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Raúl full_name: Estévez, Raúl last_name: Estévez - first_name: Ru-Rong full_name: Ji, Ru-Rong last_name: Ji - first_name: Cagla full_name: Eroglu, Cagla last_name: Eroglu citation: ama: Baldwin KT, Tan CX, Strader ST, et al. HepaCAM controls astrocyte self-organization and coupling. Neuron. 2021;109(15):2427-2442.e10. doi:10.1016/j.neuron.2021.05.025 apa: Baldwin, K. T., Tan, C. X., Strader, S. T., Jiang, C., Savage, J. T., Elorza-Vidal, X., … Eroglu, C. (2021). HepaCAM controls astrocyte self-organization and coupling. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2021.05.025 chicago: Baldwin, Katherine T., Christabel X. Tan, Samuel T. Strader, Changyu Jiang, Justin T. Savage, Xabier Elorza-Vidal, Ximena Contreras, et al. “HepaCAM Controls Astrocyte Self-Organization and Coupling.” Neuron. Elsevier, 2021. https://doi.org/10.1016/j.neuron.2021.05.025. ieee: K. T. Baldwin et al., “HepaCAM controls astrocyte self-organization and coupling,” Neuron, vol. 109, no. 15. Elsevier, p. 2427–2442.e10, 2021. ista: Baldwin KT, Tan CX, Strader ST, Jiang C, Savage JT, Elorza-Vidal X, Contreras X, Rülicke T, Hippenmeyer S, Estévez R, Ji R-R, Eroglu C. 2021. HepaCAM controls astrocyte self-organization and coupling. Neuron. 109(15), 2427–2442.e10. mla: Baldwin, Katherine T., et al. “HepaCAM Controls Astrocyte Self-Organization and Coupling.” Neuron, vol. 109, no. 15, Elsevier, 2021, p. 2427–2442.e10, doi:10.1016/j.neuron.2021.05.025. short: K.T. Baldwin, C.X. Tan, S.T. Strader, C. Jiang, J.T. Savage, X. Elorza-Vidal, X. Contreras, T. Rülicke, S. Hippenmeyer, R. Estévez, R.-R. Ji, C. Eroglu, Neuron 109 (2021) 2427–2442.e10. date_created: 2021-08-06T09:08:25Z date_published: 2021-08-04T00:00:00Z date_updated: 2023-09-27T07:46:09Z day: '04' department: - _id: SiHi doi: 10.1016/j.neuron.2021.05.025 ec_funded: 1 external_id: isi: - '000692851900010' pmid: - '34171291' intvolume: ' 109' isi: 1 issue: '15' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.neuron.2021.05.025 month: '08' oa: 1 oa_version: Published Version page: 2427-2442.e10 pmid: 1 project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Neuron publication_identifier: eissn: - 1097-4199 issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: HepaCAM controls astrocyte self-organization and coupling type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2021' ... --- _id: '10655' abstract: - lang: eng text: "Adeno-associated viruses (AAVs) are widely used to deliver genetic material in vivo to distinct cell types such as neurons or glial cells, allowing for targeted manipulation. Transduction of microglia is mostly excluded from this strategy, likely due to the cells’ heterogeneous state upon environmental changes, which makes AAV design challenging. Here, we established the retina as a model system for microglial AAV validation and optimization. First, we show that AAV2/6 transduced microglia in both synaptic layers, where layer preference corresponds to the intravitreal or subretinal delivery method. Surprisingly, we observed significantly enhanced microglial transduction during photoreceptor degeneration. Thus, we modified the AAV6 capsid to reduce heparin binding by introducing four point mutations (K531E, R576Q, K493S, and K459S), resulting in increased microglial transduction in the outer plexiform layer. Finally, to improve microglial-specific transduction, we validated a Cre-dependent transgene delivery cassette for use in combination with the Cx3cr1CreERT2 mouse line. Together, our results provide a foundation for future studies optimizing AAV-mediated microglia transduction and highlight that environmental conditions influence microglial transduction efficiency.\r\n" acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 715571). The research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Bioimaging Facility, the Life Science Facility, and the Pre-Clinical Facility, namely Sonja Haslinger and Michael Schunn for their animal colony management and support. We would also like to thank Chakrabarty Lab for sharing the plasmids for AAV2/6 production. Finally, we would like to thank the Siegert team members for discussion about the manuscript. article_processing_charge: Yes article_type: original author: - first_name: Margaret E full_name: Maes, Margaret E id: 3838F452-F248-11E8-B48F-1D18A9856A87 last_name: Maes orcid: 0000-0001-9642-1085 - first_name: Gabriele M. full_name: Wögenstein, Gabriele M. last_name: Wögenstein - first_name: Gloria full_name: Colombo, Gloria id: 3483CF6C-F248-11E8-B48F-1D18A9856A87 last_name: Colombo orcid: 0000-0001-9434-8902 - first_name: Raquel full_name: Casado Polanco, Raquel id: 15240fc1-dbcd-11ea-9d1d-ac5a786425fd last_name: Casado Polanco orcid: 0000-0001-8293-4568 - first_name: Sandra full_name: Siegert, Sandra id: 36ACD32E-F248-11E8-B48F-1D18A9856A87 last_name: Siegert orcid: 0000-0001-8635-0877 citation: ama: Maes ME, Wögenstein GM, Colombo G, Casado Polanco R, Siegert S. Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. Molecular Therapy - Methods and Clinical Development. 2021;23:210-224. doi:10.1016/j.omtm.2021.09.006 apa: Maes, M. E., Wögenstein, G. M., Colombo, G., Casado Polanco, R., & Siegert, S. (2021). Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. Molecular Therapy - Methods and Clinical Development. Elsevier. https://doi.org/10.1016/j.omtm.2021.09.006 chicago: Maes, Margaret E, Gabriele M. Wögenstein, Gloria Colombo, Raquel Casado Polanco, and Sandra Siegert. “Optimizing AAV2/6 Microglial Targeting Identified Enhanced Efficiency in the Photoreceptor Degenerative Environment.” Molecular Therapy - Methods and Clinical Development. Elsevier, 2021. https://doi.org/10.1016/j.omtm.2021.09.006. ieee: M. E. Maes, G. M. Wögenstein, G. Colombo, R. Casado Polanco, and S. Siegert, “Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment,” Molecular Therapy - Methods and Clinical Development, vol. 23. Elsevier, pp. 210–224, 2021. ista: Maes ME, Wögenstein GM, Colombo G, Casado Polanco R, Siegert S. 2021. Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. Molecular Therapy - Methods and Clinical Development. 23, 210–224. mla: Maes, Margaret E., et al. “Optimizing AAV2/6 Microglial Targeting Identified Enhanced Efficiency in the Photoreceptor Degenerative Environment.” Molecular Therapy - Methods and Clinical Development, vol. 23, Elsevier, 2021, pp. 210–24, doi:10.1016/j.omtm.2021.09.006. short: M.E. Maes, G.M. Wögenstein, G. Colombo, R. Casado Polanco, S. Siegert, Molecular Therapy - Methods and Clinical Development 23 (2021) 210–224. date_created: 2022-01-23T23:01:28Z date_published: 2021-12-10T00:00:00Z date_updated: 2023-11-16T13:12:03Z day: '10' ddc: - '570' department: - _id: SaSi - _id: SiHi doi: 10.1016/j.omtm.2021.09.006 ec_funded: 1 external_id: isi: - '000748748500019' file: - access_level: open_access checksum: 77dc540e8011c5475031bdf6ccef20a6 content_type: application/pdf creator: cchlebak date_created: 2022-01-24T07:43:09Z date_updated: 2022-01-24T07:43:09Z file_id: '10657' file_name: 2021_MolTherMethodsClinDev_Maes.pdf file_size: 4794147 relation: main_file success: 1 file_date_updated: 2022-01-24T07:43:09Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 210-224 project: - _id: 25D4A630-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715571' name: Microglia action towards neuronal circuit formation and function in health and disease publication: Molecular Therapy - Methods and Clinical Development publication_identifier: eissn: - 2329-0501 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2021' ... --- _id: '10321' abstract: - lang: eng text: Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice. MADM enables concomitant fluorescent cell labeling and introduction of a mutation of a gene of interest with single-cell resolution. This protocol highlights major steps for the generation of genetic mosaic tissue and the isolation and processing of respective tissues for downstream histological analysis. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021). acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Bioimaging (BIF) and Preclinical Facilities (PCF). We particularly thank Mohammad Goudarzi for assistance with photography of mouse perfusion and dissection. N.A. received support from FWF Firnberg-Programm (T 1031). This work was also supported by IST Austria institutional funds; FWF SFB F78 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H. article_number: '100939' article_processing_charge: Yes article_type: original author: - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Amberg N, Hippenmeyer S. Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. 2021;2(4). doi:10.1016/j.xpro.2021.100939 apa: Amberg, N., & Hippenmeyer, S. (2021). Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. Cell Press. https://doi.org/10.1016/j.xpro.2021.100939 chicago: Amberg, Nicole, and Simon Hippenmeyer. “Genetic Mosaic Dissection of Candidate Genes in Mice Using Mosaic Analysis with Double Markers.” STAR Protocols. Cell Press, 2021. https://doi.org/10.1016/j.xpro.2021.100939. ieee: N. Amberg and S. Hippenmeyer, “Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers,” STAR Protocols, vol. 2, no. 4. Cell Press, 2021. ista: Amberg N, Hippenmeyer S. 2021. Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protocols. 2(4), 100939. mla: Amberg, Nicole, and Simon Hippenmeyer. “Genetic Mosaic Dissection of Candidate Genes in Mice Using Mosaic Analysis with Double Markers.” STAR Protocols, vol. 2, no. 4, 100939, Cell Press, 2021, doi:10.1016/j.xpro.2021.100939. short: N. Amberg, S. Hippenmeyer, STAR Protocols 2 (2021). date_created: 2021-11-21T23:01:28Z date_published: 2021-11-10T00:00:00Z date_updated: 2023-11-16T13:08:03Z day: '10' ddc: - '573' department: - _id: SiHi doi: 10.1016/j.xpro.2021.100939 ec_funded: 1 file: - access_level: open_access checksum: 9e3f6d06bf583e7a8b6a9e9a60500a28 content_type: application/pdf creator: cchlebak date_created: 2021-11-22T08:23:58Z date_updated: 2021-11-22T08:23:58Z file_id: '10329' file_name: 2021_STARProtocols_Amberg.pdf file_size: 7309464 relation: main_file success: 1 file_date_updated: 2021-11-22T08:23:58Z has_accepted_license: '1' intvolume: ' 2' issue: '4' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression publication: STAR Protocols publication_identifier: eissn: - 2666-1667 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2021' ...