TY - JOUR
AB - We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. Our proof comes with explicit, constructive upper and lower bounds on the error term. It uses in an essential way the bosonic formulation of the model in terms of the Holstein-Primakoff representation. In this language, the model describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor attraction. This attractive interaction makes the lower bound on the free energy particularly tricky: the key idea there is to prove a differential inequality for the two-particle density, which is thereby shown to be smaller than the probability density of a suitably weighted two-particle random process on the lattice.
AU - Correggi, Michele
AU - Giuliani, Alessandro
AU - Seiringer, Robert
ID - 1572
IS - 1
JF - Communications in Mathematical Physics
TI - Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet
VL - 339
ER -
TY - JOUR
AB - We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in ℝ3. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one established in the celebrated works of Erdos, Schlein, and Yau.
AU - Chen, Thomas
AU - Hainzl, Christian
AU - Pavlović, Nataša
AU - Seiringer, Robert
ID - 1573
IS - 10
JF - Communications on Pure and Applied Mathematics
TI - Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti
VL - 68
ER -
TY - JOUR
AB - Given a convex function (Formula presented.) and two hermitian matrices A and B, Lewin and Sabin study in (Lett Math Phys 104:691–705, 2014) the relative entropy defined by (Formula presented.). Among other things, they prove that the so-defined quantity is monotone if and only if (Formula presented.) is operator monotone. The monotonicity is then used to properly define (Formula presented.) for bounded self-adjoint operators acting on an infinite-dimensional Hilbert space by a limiting procedure. More precisely, for an increasing sequence of finite-dimensional projections (Formula presented.) with (Formula presented.) strongly, the limit (Formula presented.) is shown to exist and to be independent of the sequence of projections (Formula presented.). The question whether this sequence converges to its "obvious" limit, namely (Formula presented.), has been left open. We answer this question in principle affirmatively and show that (Formula presented.). If the operators A and B are regular enough, that is (A − B), (Formula presented.) and (Formula presented.) are trace-class, the identity (Formula presented.) holds.
AU - Deuchert, Andreas
AU - Hainzl, Christian
AU - Seiringer, Robert
ID - 1704
IS - 10
JF - Letters in Mathematical Physics
TI - Note on a family of monotone quantum relative entropies
VL - 105
ER -
TY - JOUR
AB - We study a double Cahn-Hilliard type functional related to the Gross-Pitaevskii energy of two-components Bose-Einstein condensates. In the case of large but same order intercomponent and intracomponent coupling strengths, we prove Γ-convergence to a perimeter minimisation functional with an inhomogeneous surface tension. We study the asymptotic behavior of the surface tension as the ratio between the intercomponent and intracomponent coupling strengths becomes very small or very large and obtain good agreement with the physical literature. We obtain as a consequence, symmetry breaking of the minimisers for the harmonic potential.
AU - Goldman, Michael
AU - Royo-Letelier, Jimena
ID - 1807
IS - 3
JF - ESAIM - Control, Optimisation and Calculus of Variations
TI - Sharp interface limit for two components Bose-Einstein condensates
VL - 21
ER -
TY - JOUR
AB - We investigate the relation between Bose-Einstein condensation (BEC) and superfluidity in the ground state of a one-dimensional model of interacting bosons in a strong random potential. We prove rigorously that in a certain parameter regime the superfluid fraction can be arbitrarily small while complete BEC prevails. In another regime there is both complete BEC and complete superfluidity, despite the strong disorder
AU - Könenberg, Martin
AU - Moser, Thomas
AU - Seiringer, Robert
AU - Yngvason, Jakob
ID - 1880
JF - New Journal of Physics
TI - Superfluid behavior of a Bose-Einstein condensate in a random potential
VL - 17
ER -